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Abstract 

Overfitting is a phenomenon that occurs when a machine learning model is trained for too long. When a model 
focuses too much on the exact fitness of the training samples to the provided training labels, it cannot keep track 
of the predictive rules that would be useful for recognizing patterns in the test data This phenomenon is commonly 
attributed to memorization of samples and noise. Over-parameterized networks with excessive neurons can 
memorize noise in small datasets rather than learning generalizable patterns. While it is true that the model 
encodes various peculiarities as the training process continues, it is argued that most of the overfitting occurs in 
the process of reconciling sharply defined membership ratios. This study presents an approach that increases the 
classification accuracy of machine learning models by allowing the model to negotiate output representations of 
the samples with previously determined class labels. By setting up a negotiation between the model along with an 
invitation to the machine learning community to explore the limits of the proposed paradigm. This work also aims 
to incentivize the machine learning community to exploit the negotiation paradigm to overcome the learning 
related challenges in other research fields such as continual learning. The Python code of the experimental setup 
is uploaded to GitHub(https://github.com/nurikorhan/Negotiated-Representations). 
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Introduction 

The general structure of the supervised deep learning [1] requires us to rely on the labels provided by humans 
beforehand. With these provided labels, one can create a cost function that informs the model on how far off 
the prediction is. By trying to decrease the cost with the help of backpropagation, the model is expected to 
encode the underlying input-output relationships into its weights. This approach works extraordinarily well for 
big data regimes. However, it becomes unreliable in low data regimes. If the model is large enough to ensure 
the fitness between samples and their respective labels, it tends to encode the aspects of the samples that are 
irrelevant to the classification process. The burden of encoding the irrelevant features makes the classifier less 
accurate on test samples. This phenomenon is called overfitting [2]. Researchers have developed highly 
sophisticated methods to prevent the data from overfitting. 

Data augmentation and regularization techniques are limited in compensating for the overfitting problem [3]. 
Data augmentation aims to increase the number of samples by slightly vibrating the training samples in the 
multi-dimensional space to allow each sample to represent its corresponding neighbourhood, and most 
regularization methods limit the movement of the weights by adding punishment to the loss function. None 
explicitly addresses the problem of not having membership ratios of the samples to their classes. While it is 
true that a sample either belongs to a class or not, it is impossible to justifiably represent the samples by their 
corresponding labels if the proximity of the individual samples to all classes is not accounted for. This is also 
the case for humans. If an object is sufficiently distant from an observer, the observer will assign equal 
probabilities for each class. In other words, "If something is far enough, it may be anything." As the object 
gets closer, the observer gradually updates the class probabilities (say, it looks like a dog, but it could still be 
anything). Furthermore, if human errors are also considered, it should be kept in mind that the output 
representations should never be exact. In this respect, ANFIS [4] was an early attempt to break the ice on the 
quantification of class memberships. ANFIS was proposed for increasing the speed of learning in 
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backpropagation-based algorithms.  However, a pre-encoded knowledge base (rule base and database) requires 
a deep understanding of the supervision criteria for determining the membership functions. Needless to 
mention the cost. 

In this study, an attempt is made to deal with overfitting by setting up a negotiation between the modelit can 
be ensured that as the model obtains a better fitness to the labels, it is rewarded with a better position in the 
negotiation table. Therefore, the model comes to better fitness and does not spend much energy accounting for 
wrong labels, exceptions (outliers), and membership values that are justified by the quality of the observations. 
Also, gradually scrutinizing the categorical labels relieves us of endless hours of fitting the data into a 
paradigm. 

The motivation for this study is rooted in the exploration of generic and specific differences in representations 
[5], as well as Ludwig Wittgenstein's philosophical investigations [8]. When attempting to identify an object, 
a child must examine the object through various dimensions, such as visual properties (e.g., shape, color, 
texture, size) and the object's function (e.g., taste, content, or purpose). Nonetheless, not all dimensions are 
consistently accessible for object recognition, and even when all the required information is available, it is not 
always feasible to employ every dimension for differentiating between classes. This phenomenon necessitates 
a careful examination of class memberships from the quality of observation standpoint. 

This study aims to tackle the overfitting problem in low data regime machine learning problems by setting up 
a negotiation between the model's belief of training labels and the labels provided by human supervisors. The 
proposed method aims to balance the model's assumptions and human input, creating a more robust and 
accurate classifier, even when dealing with limited data 

The organization of the paper is as follows: In the Materials and Methods section, the theoretical foundation 
of negotiated representations is presented, including a discussion of overfitting prevention strategies and the 
mathematical formulation of the negotiation paradigm. In the Experiments section, the network architectures 
and experimental setup for validation are described. In the Results and Discussion section, the performance of 
the proposed method is evaluated across four benchmark datasets (MNIST, Fashion-MNIST, CIFAR-10, and 
CIFAR-100), and the findings are analyzed. The Conclusion section summarizes the contributions and 
discusses future research directions. 

Materials and Methods 

Overfitting and Prevention Strategies 

Overfitting [6] is a phenomenon that occurs when the model is trained for too long and focused too much on 
the exact fitness of the training samples to the provided training labels and cannot keep track of the predictive 
rules that would be useful on the test data. In the literature, overfitting is commonly attributed to memorization 
of the samples, noise, and other peculiarities of data samples by using a high number of neurons. While it is 
true that the model also encodes undesired aspects of the data samples as training process continues, it is argued 
that most of the overfitting occurs in the process of reconciling sharply defined membership ratios to specific 
classes. 

The loss of the individual differences in hierarchical systems [7] is also of a great significance in understanding 
representation learning. Although neural networks can be considered hierarchical systems, individual 
differences may not be lost but transformed into the means of compensation for the inconvenient membership 
ratios. However, the main concern of the problem is related to the fidelity of the representation to the actual 
sample, and individual differences should be filtered out for higher representational capacity in the face of a 
particular objective such as classification. 

The third argument that should be discussed is that the certainty of a decision depends highly on the quality of 
the observation. For instance, let’s assume that we try to recognize a cat or a dog by using a picture given. If 
the distance of the animal from the camera is long enough to cover all distinctive differences between cats and 
dogs, we decide that the probabilities are the same. As the camera gets closer to the animal of interest, the 
distinctive differences start to appear, and the probability of the sample belonging to one of the classes 
increases due to the increase in the observability. Trying to form an association among poorly represented 
memberships may cause the network to encode the exceptions and therefore inject specific and undesired noise 
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into the principal components of the distinction process. To prevent machine learning models from overfitting, 
several methods have been proposed: dropout [9], L1 [10], L2 [11], and augmentation [3]. To our knowledge, 
none of the proposed methods in the literature computationally scrutinizes the provided labels in supervised 
learning. 

In this article, it is suggested that a sharp definition of the membership ratios may be the leading source of 
overfitting. To prevent overfitting, this work proposes enabling the model to negotiate the membership ratios 
of all samples to all classes by slightly adjusting the provided labels, such as changing a label from 1 to 0.98, 
to better represent the sample's relationship with the rest of the dataset. To test the hypothesis, several 
overfitting scenarios were generated to allow the model to compensate for label imprecision. The proposed 
training paradigm has been tested on publicly available benchmark datasets such as CIFAR-10, CIFAR-100, 
MNIST, and Fashion-MNIST. To generate a low data regime, a small set of training and test examples for 
each dataset were selected. The results on all datasets have shown that the negotiation between the model and 
the provided labels is a powerful method in preventing overfitting. 

Negotiated Representations 

The general structure of supervised learning requires us to rely on the labels provided by humans beforehand. 
These provided labels are then used to create a cost function that informs the model on how far off the 
prediction is. By trying to decrease the cost with the help of backpropagation, the model is expected to encode 
the underlying input-output relationships into its weights. This logic works extraordinarily well for big data 
regimes. However, it becomes unreliable in low data regimes as the size of the samples increases. If the model 
is large enough to ensure the fitness between samples and their respective labels, it tends to encode the aspects 
of the samples that are irrelevant to the classification process. A neural network can be represented as the 
mapping function in Equation 1: 

𝑌: 𝑓(𝑋, θ, b) 

Equation 1 

 

where X represents the data instances in the training set, Y represents ground truth labels, b is bias, and θ 
represents the network parameters. The network parameters are updated at each epoch with backpropagation 
depending on the predicted labels, Y'=f(X) and the loss function 𝐿: 𝐽(𝒀, 𝒀!)		where J represents the cost 
function. The optimization of network parameters is shown as:  

θ∗ = arg𝑚𝑖𝑛
1
𝐿
6(𝑦# , 𝑦#!)
$

#%&

 

Equation 2 

 

This study presents an attempt to deal with overfitting by setting up a negotiation table between the model 

 
Figure 1.  The model diagram with negotiation rate. 

where negotiated labels are calculated by a weighted average of predicted labels and original labels. When the 
negotiation rate is included, the loss function is calculated as seen in Equation 3. 
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                                                                     𝑳 = 𝐽((1 − 𝑛). 𝒀, 𝑛. 𝒀!)                                                                          

Equation 3 

 

Thus, the optimization term shapes as seen in Equation 4. 

                                             𝛉∗ = arg𝑚𝑖𝑛 &
$
∑ 𝐽((1 − 𝑛). 𝒚, 𝑛. 𝑦#!)$
#%&                                                                  

Equation 4 

 

It should be kept in mind that, at the end of each negotiation phase original labels are switched with negotiated 
labels that are calculated in that phase. Furthermore, since the model gains more confidence as training 
continues, the negotiation rate is also linearly increased at the end of each epoch. This change means that the 
coefficient of the model's predictions will increase and the coefficient of the provided labels will decrease at 
the end of each negotiation phase. The linear increment in the negotiation rate limits the number of negotiations 
that take place throughout training. Otherwise, negotiations would arrive at a point where the model's 
coefficient in the weighted average (n) would be more than 1, and the previously determined labels' coefficient 
(1-n) would go below zero. A detailed flowchart of the model is given in Figure 2. 

 
Figure 2.  Flowchart of the model. 

Experiments 

To evaluate the performance of the proposed paradigm, four different models were designed. The models were 
provided with sufficient data to draw meaningful conclusions while limiting the amount of data used for 
training to induce overfitting. The experimental setups described below serve as a proof of concept and 
demonstrate the behaviours of the models. One downside of exceptionally high success rates in classifiers is 
that they can be attributed to the injection of test dataset information into the model through hyperparameter 
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tuning. Optimizing each part of the model for maximum test performance may also result in encoding many 
peculiarities of the test dataset within the model. Consequently, building upon any paradigm requires us to 
reverse the optimization process for a more objective evaluation of the method. For this reason, it was found 
it more beneficial to focus solely on demonstrating the behaviour of the model throughout the experiments. In 
the context of investigating overfitting induction and it 

For all the convolution layers within the networks, utilization was made of the Rectified Linear Unit (ReLU) 
activation function, as it offers several advantages, such as reduced likelihood of the vanishing gradient 
problem and improved training speed. In contrast, for the final fully connected layer in each model, softmax 
layer was employed, as it enables the output to be constrained between the range of 0 and 1, which is 
particularly useful for the deployment of the negotiation paradigm in classification tasks. 

Results and Discussion 

This section presents evidence of the effectiveness of the proposed method for preventing overfitting in the 
model. First, a comprehensive analysis of the results is provided, including figures and their interpretations. 
Second, a comparison is made between the baseline model and the model trained with the proposed paradigm. 
Specifically, Table 1 and Table 2 summarize the performance metrics of the two models. Figure 4 shows that 
the loss reduction trend mirrors that observed in Figure 6, which confirms the performance of the proposed 
method. Additionally, Figure 8 and Figure 10 present the results of the model trained on the CIFAR-10 and 
CIFAR-100 datasets respectively. The findings are promising, even though some aspects remain unexplained. 
In Table 1, testing accuracy performances of the baseline model and proposed model are demonstrated. 

Table 1. Accuracy comparison of baseline model and the proposed model on test data. 

Dataset Baseline Model’s Accuracy Proposed Model’s Accuracy 
MNIST 0.828 0.867 
Fashion-MNIST 0.719 0.766 
CIFAR-10 0.326 0.343 
CIFAR-100 0.460 0.491 

The comparison between the losses of the baseline model and the proposed model is demonstrated in Table 2. 

Table 2. Loss comparison between baseline model and proposed model on test data. 

Dataset Baseline Model’s Loss Proposed Model’s Loss 
MNIST 0.92 0.41 
Fashion-MNIST 1.94 0.78 
CIFAR-10 4.48 2.13 
CIFAR-100 13.43 5.18 

The proposed method outperforms the baseline model for each dataset. Plots are provided of training and 
validation accuracies with an increasing number of epochs in later sections to visualize overfitting and model 
training performances. 

MNIST 

A model was constructed for MNIST dataset that consists of two convolutional layers, each having 32 and 64 
filters respectively, followed by a fully connected layer containing ten neurons. The training set consisted of 
256 samples, and the test set contained 256 samples. Due to the low number of samples and the simplicity of 
recognizing digits, it was relatively easy to generate an overfitting scenario. Moreover, there were no high-
level relationships that could prevent the model from accurately classifying the samples. Additionally, since 
the images are single-channeled gray images, there were no color complications. The accuracy and loss values 
for the model are provided in Figure 3. 
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(a) Loss 

 
(b) Accuracy 

Figure 3.  Standard Network Performance on MNIST dataset. 

As observed in Figure 3-a, the model starts overfitting after around ten epochs. When the proposed method 
was applied to the model it was observed that the overfitting was reduced and the accuracy was improved as 
it is seen in Figure 4. 

 
(a) Loss 

 
(b) Accuracy 

Figure 4.  Performance of the Network with Negotiated Representation on MNIST dataset. 

Fashion-MNIST 

The model for Fashion-MNIST dataset has the same network parameters as were used for training MNIST 
dataset. The training set consisted of 128 samples, and the test set comprised 128 samples.  The accuracy and 
loss values for the model are provided in Figure 5. 

 

 
(a) Loss 

 
(b) Accuracy 

Figure 5.  Standard Network Performance on Fashion-MNIST dataset. 
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As can be noticed from Figure 5-a, the model is heavily over-fitted. The model improves after the proposed 
negotiation representation regarding loss and accuracy as it is seen in Figure 6. 

 
(a) Loss 

 
(b) Accuracy 

Figure 6. Performance of Network with Negotiated Representation on Fashion-MNIST dataset. 

CIFAR-10 

Creating an overfitting scenario for the CIFAR-10 dataset proved to be more challenging than for MNIST and 
Fashion-MNIST. This increased difficulty can be attributed to the higher-level relationships and color images 
present in the dataset, resulting in three channels of information per sample, which adds complexity to the 
learning task, and generating an overfitting scenario with a small network becomes more difficult. Figure 7 
shows the loss and accuracy performance of regular training on CIFAR-10 dataset. The observed results clearly 
demonstrate that the proposed paradigm significantly reduced the validation dataset's loss. However, the 
increase in test accuracy was relatively minor and not indicative of the improvement in test loss. Nevertheless, 
any improvement is significant in the context of machine learning. 

 
(a) Loss 

 
(b) Accuracy 

Figure 7.  Standard Network Performance on CIFAR-10 dataset. 

Like the previous simulations, overfitting is observed by evaluating the loss and accuracy plots. After training 
with the negotiation paradigm, an improvement was obtained in the loss and accuracy of the model as 
demonstrated in Figure 8. 



International Journal of Natural and Engineering Sciences 185 

 

 
(a) Loss 

 
(b) Accuracy 

Figure 8.  Performance of Network with Negotiated Representation on CIFAR-10 dataset. 

CIFAR-100 

For the CIFAR-100 dataset, a more complex model was designed due to the large number of classes in the 
dataset. The model comprises six convolutional layers, each containing 64, 64, 128, 128, 256, and 256 filters, 
respectively, followed by a fully connected layer with 512 neurons and a softmax layer. The training set 
included 45,000 samples, while the test set consisted of 5,000 samples. A more extensive model is necessary 
for managing the increased number of classes, and fitting such a model requires a larger dataset. However, a 
larger dataset can make achieving fitness more challenging. Our choice of model and dataset size was based 
on these considerations, as our objective was to first generate overfitting and then mitigate it using our 
proposed paradigm. 

 
(a) Loss 

 
(b) Accuracy 

Figure 9.  Standard Network Performance on CIFAR-100 dataset. 

Generating an overfitting scenario for the CIFAR-100 dataset proved more difficult than for other data sets 
due to the large number of classes, complex relationships within the data, and the use of coloured images 
containing three channels of information. In the simulations for the CIFAR-100 dataset, it was found that 
decreasing the loss was relatively manageable while improving the accuracy was more challenging. 
Consequently, representational fidelity does not always guarantee high accuracy. In this scenario, overfitting 
is unavoidable. To mitigate overfitting, dropout and max pooling layers were incorporated. Figure 9 shows the 
loss and accuracy performance of the model. Figure 9 shows an obvious overfitting after a few epochs. 
Overfitting is reduced significantly after applying the negotiation representation as it is seen in Figure 10. 
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(a) Loss 

 
(b) Accuracy 

Figure 10.  Performance of Network with Negotiated Representation on CIFAR-100 dataset. 

Conclusion 

In this study, a novel algorithm has been presented to mitigate overfitting in classification tasks, particularly 
in low data regimes. The method has been applied to several data sets, including MNIST, Fashion-MNIST, 
CIFAR 10, and CIFAR 100, demonstrating its potential to address a broad range of low data regime challenges. 
The success of the method, however, is dependent on the negotiation rate, and further research is required to 
investigate the relationship between the dataset and the optimal negotiation rate for the best performance. The 
aim of this study is to draw the attention of the machine learning community towards developing novel methods 
for justifying assigned labels. This work proposes that the discrepancy between training and test loss could 
stem from the fact that the provided labels are not adequately justified by the characteristics of the observations. 
The justification will likely be context dependent. Considering the context of the dataset, each deviation from 
the most optimal representations should be injected into labels as class memberships. Doing so will enhance 
the model's performance and provide a more philosophically sound justification for deep learning applications. 
This study also suggests that the negotiated learning paradigm holds great promise for continual learning, 
offering a more efficient, intuitive, and sustainable approach compared to current methods in the literature 
[11]. By injecting the model's past experiences into future labels, one can potentially mitigate catastrophic 
forgetting to a new degree without compromising the plasticity of the model or relying on memory intensive 
replay scenarios. It can also be coupled with existing paradigms to update the state-of-the-art performances. 
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