
*Corresponding Author
e-mail: m_salehi61@yahoo.com

    	 Received  : April 04, 2010
	 Accepted  :  June 29, 2010

On-line Analysis Out-of-Control Signals for Multivariate Control Chart Using Neural 
Network

Ardeshir BAHREININEJAD1		 Mohammad Reza Amin NASERI1	      Mojtaba SALEHI1*	 Ali SALMASNIA1

1Faculty of Engineering, Organization Tarbiat Modares University, Tehran, IRAN

Abstract
It is common in industrial process to monitor several correlated quality variables simultaneously. Most of multivariate quality control charts 

are effective in detecting out-of-control signals based upon an overall statistics in multivariate manufacturing processes. The main problem of such 
charts is that they can detect an out-of-control event but do not directly determine which variable or group of variables has caused the out-of-control 
signal and what is the magnitude of out of control. This study presents an artificial neural network-based model to supplement the multivariate χ²  
chart. This method consists of two modules. In the first module using a general-neural network, type of unnatural pattern can be recognized. Then 
by using two special-neural networks for shift mean and trend, it can be recognized magnitude of mean shift and slope of trend for each variable 
simultaneously. The performance of the proposed approach has been evaluated using a simulated example. The results confirm that the proposed 
method provides an excellent rate of classification and the output generated by trained network is strongly correlated with the corresponding actual 
target value for each quality characteristic. 
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INTRODUCTION

Control charts are the most widely applied Statistical 
process control (SPC) tools used to reveal abnormal 
variations of monitored measurements. Such charts are 
useful in identifying the presence of assignable causes 
in manufacturing processes. A process is out-of-control 
when points fall outside the control chart limits or the 
control charts display unnatural (non-random) patterns 
[1]. Those nonrandom Control Chart Patterns (CCPs) 
can be associated with a specific set of assignable causes 
provided that appropriate process knowledge is available. 
Hence effective identification of nonrandom patterns can 
greatly narrow down a set of possible assignable causes to 
be investigated, and significantly speed up the diagnostic 
process. 

Control charts do not provide any pattern-related 
information when the process is out-of-control. Many 
supplementary rules, like zone tests or run rules and 
Expert Systems have also been implemented in Control 
Chart Pattern recognition (CCPR). But according the 
reported works, the overall percentages of correctly 
recognized for these approaches is low. Recently, many 
studies used Artificial Neural Networks (ANNs) in order 
to detect patterns more effectively than the conventional 
approach and their aim is the automatic diagnosis of 
the patterns. On the other hand, since some advanced 
automatic data collection and inspection techniques are 
widely adopted in manufacturing industries. The tasks of 
SPC traditionally performed by quality engineers have to 

be automated. Therefore, various artificial intelligence 
approaches and machine learning techniques have been 
applied into SPC. Neural Networks (NNs) have excellent 
noise tolerance in real time, requiring no hypothesis on 
statistical distribution of monitored measurements. This 
important feature makes NNs promising and effective 
tools that can be implemented to improve data analysis 
in manufacturing quality control applications. In 
addition, in recognition problems, NNs can recall learned 
patterns from noisy representations. This feature makes 
NNs highly appropriate for CCPR because unnatural 
CCPs are generally contaminated by natural variations 
in the process. Such applications have been reported 
to outperform the conventional methods in terms of 
recognition accuracy and speed. 

Pugh [2-3] compared the performance of Shewhart 
Charts with that of back propagation network (BPN) 
models in detecting the process mean shift. The trained 
network generated average run length (ARL) results of 
around the ARL of an X-bar chart for large shifts, for 
a sample size of five. Hwarng [4] specified a unique 
approach for training BPN solely for analyzing cycle 
patterns on control charts. The recognition output of the 
network was the amplitude of the cycle pattern, such as 
0.5s, 1.0s and 1.5s (where s is the standard deviation of 
process). Hwarng and Chong [5] proposed an adaptive 
resonance theory (ART)-based pattern recognizer to 
detect unnatural CCPs. In their work, the ART-based 
recognizer could perform fast and cumulative learning 
due to the unsupervised-learning nature of the ART 
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networks. The ART-based recognizer was superior to 
the BPN-based recognizer for cycle patterns, inferior 
for mixture patterns and similar for other patterns. Pham 
and Chan [6-7] described a type of neural network for 
control chart pattern recognition. The neural network 
is self organizing and can learn to recognize new 
patterns in an on-line incremental manner. Sagiroglu 
[8] described a type of neural network for speeding 
up the training process and to compare three training 
algorithms in terms of speed, performance and parameter 
complexity for control chart pattern (CCP) recognition. 
The networks are multilayered perceptrons trained with 
a resilient propagation, back propagation (BP) and 
extended delta-bar-delta algorithms. The recognition 
results of CCPs show the BP algorithm is accurate and 
provides better and faster results, than other algorithms. 
Chiu et al. [9] used a BPN to identify shifts in process 
parameter values according to AR(1) time series models 
with various autocorrelation coefficients. Their results 
revealed that NNs successfully separated data that were 
shifted by one, two and three standard deviations from 
non-shifted data. The conventional control charts could 
not identify the same process shifts. Niaki and Abbasi 
[10] developed a special two levels-based model using 
T 2 control chart for detecting the out-of-control signals 
and an MLPNN for identifying the source(s) of the out-
of-control signals. Guh, [11] presented a hybrid learning-
based model, which integrates NN and DT learning 
techniques, to detect and discriminate typical unnatural 
CCPs, while identifying the major parameter (such as 
the shift displacement or trend slope) and starting point 
of the CCP detected. Chen et al. [12] presented a hybrid 
approach by integrating wavelet method with ANNs 
for on-line recognition of CCPs including concurrent 
patterns. The main advantage of his approach is its 
capability of recognizing coexisted or concurrent patterns 
without training by concurrent patterns. Guh and Shiue 
[13], proposed a straightforward and effective model 
to detect the mean shifts in multivariate control charts 
using decision tree learning techniques. Experimental 
results using simulation showed that the proposed model 
couldn’t only efficiently detect the mean shifts but also 
accurately identify the variables that have deviated from 
their original means.

In many quality control settings, the manufacturing 
process may have two or more correlated. The usual 
practice has been to maintain a separate (univariate) chart 
for each characteristic. Unfortunately, this could result in 
some fault out-of-control alarms when the characteristics 
are highly correlated. Hotelling’s T 2 statistic might be the 
most common tool in multivariate analysis for identifying 
whether the whole process is in out-of-control state. 
While neural network approaches are generally focused 
on univariate charts, there are a few multivariate studies 
found with neural networks in the literature that we 
review them here briefly. Chen and Wang [14] developed 
an artificial neural network-based model to supplement 
the multivariate χ² chart. The method not only identifies 

the characteristic or group of characteristics that cause 
the signal but also classifies the magnitude of the shifts 
when the χ²-statistic signals that mean shifts have 
occurred. Yu and Xi [15] presented a learning-based 
model for monitoring and diagnosing out-of-control 
signals in a bivariate process. In their model, a selective 
neural network (NN) ensemble approach (DPSOEN, 
Discrete Particle Swarm Optimization) was developed 
for performing these tasks. El-Midany et al. [16] 
proposed a framework for multivariate process control 
chart recognition. The proposed methodology uses the 
Artificial Neural Networks (ANNs) to recognize set of 
subclasses of multivariate abnormal patterns, identify the 
responsible variable(s) on the occurrence of abnormal 
pattern and classify the abnormal pattern parameters. 
In the most presented approaches, recognition problem 
is limited to identifying the characteristic or group 
of characteristics that cause the mean shift, some of 
researches consider the trend also separately, But in this 
study we try to propose a new approach that can identify 
shift and trend of quality variables simultaneously and 
identify the major parameter for each deviated quality 
variable (magnitude the shift or slope of trend).

To clarify the main problem, Let Xij = Xij1, Xij2, ..., 
Xijp 

be a p dimension vector that represents the p quality 
characteristics in the jth observation of the ith subgroup 
(sample), where i=1,2,… and j=1,2,...,n. The lth component 
of Xij,  Xij1 

denotes the lth quality characteristic, l=1,2,...,p. 
It is assumed that Xij’s are independent and identically 
multivariate normal distribution with known mean μ and 
covariance matrix ∑ when the process is in control. Let 

iX  represent the mean vector for the ith subgroup. The 
statistic plotted on a multivariate χ² control chart for the 
ith subgroup is given by,

)1()()( 12 µµχ −Σ−= −
iii XXn

When the process is in control, it follows a χ² central 
distribution with p degrees of freedom. Therefore, a 
multivariate χ² control chart can be constructed by 
plotting χ²i versus time with an upper control limit (UCL) 
given by χ²α, p 

where α is an appropriate significance level 
for performing the test. 

In this research, a new approach for control chart 
pattern recognition of multivariate observations data is 
proposed. This method consists of two modules. In the 
first module at first by a multivariate χ² control chart, it 
can been detected that the process is in control or is out 
of control then using a general-neural network, type of 
unnatural pattern (shift or trend) can be recognized. Then 
by using two special-neural networks for shift mean and 
trend, it can be recognized magnitude of mean shift or 
slope of trend for each quality variable simultaneously.

 The rest of this research is organized as follows. 
Section 2 describes proposed method for solving CCPR 
problem. Section 3 presents a case study CCPR problem 
that is solved with proposed algorithm and conclusions 
will be drawn in section 4.
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MATERIAL AND METHODS

Since many CCPs often appear separately or together 
in a manufacturing process, a CCPR system can be 
developed and trained either as a general-purpose system 
that can recognize several types of CCP, or as a special-
purpose system that can recognize only a particular type 
of CCP [11]. A suitably developed special-purpose system 
should be more effective than a general-purpose system 
for analyzing a particular type of CCP [4]. In this research 
a modular framework was presented for using advantages 
of general-purpose and special-purpose simultaneously. 
Approximately it is impossible that one network would 
be employed to perform all the required recognition and 
analysis functions. Because in this situation, the network 
would have to be complex and convergence in network 
training would be very difficult. By modular structure 
we can split the main recognition problem into more 
manageable sub-problems. In this research module I is a 
general propose system for recognizing unnatural pattern 
chart and module II is a special propose system for 
estimating the major parameters of the unnatural CCPs 
for all quality variable simultaneously.

 

Input process data 
to the 

corresponding 
network 

 
Network A 

(Shift recognizer) 

 

Network B 

(Trend Recognizer) 

 Display pattern 
parameter 

Module I 

Module II 

Neural network A 

 

Normalization 

Read window data 

Start 

Is there an 
unnatural pattern 

 

No 

Yes 

Fig. 1. Proposed approach for CCPR

Module I
In this Module using a multivariate χ² control chart 

and a back propagation neural network various types 
of unnatural CCPs were detected. If Module I showed 
a special unnatural pattern, corresponding network in 
module II was implemented for estimation the major 
parameters of the unnatural CCPs otherwise collecting of 
data would be continued. 

Data preprocessing 
The network input and output range are normally 

used in Back Propagation Network training to prevent 
the problem of neuron saturation, which arises from 
presenting data to a Back Propagation Network in the 
form of raw data, rather than as data that have been 
appropriately scaled for the neuro-dynamic functions that 
are being used. In order to scale down the range of input 
data for each variable to a new range between -1 and +1, 
the following equation can be used 

)(21
min-max

min-X2variate Normalized −=

x = input value for a variate, 
Min = minimum value in a given set for each variate, 
Max = maximum value in a given set for each variate.

Unnatural detection 
After data preprocessing the χ² value of samples 

was formed. The χ²-statistic can reflect the state of 
the correlation structure and the mean vector of the 
multivariate process data. In general, control charts have 
both upper and lower control limits. However, in this 
case only an upper control limit is used, because extreme 
values of the χ²i statistic correspond to points far remote 
from the target μ.

The overall quality of a multivariate process can be 
monitored by comparing the above statistic against a 
positive UCL (χ²α, p ). These charts are easy to construct, 
if the process parameters (i.e. μ the mean vector and ∑ 
the covariance matrix) are already known. If μ is replaced 
by X , and ∑ is replaced by S in Equation 1 with n> 1, the  
χ²i  /c0 (p, m, n) statistic follows an F-distribution with p 
and (mn − m − p + 1) degrees of freedom. Here  c0 (p, m, 
n) = [p(m − 1)(n − 1)](mn − m − p + 1)−1, X is the overall 
sample mean vector and S is the pooled sample variance–
covariance matrix. Thus, a multivariate Shewhart control 
chart for the process mean, with unknown parameters, 
has the following control limit

)3(,,1 1)p-m-(mnpF
1)p-m-(mn

1)]-1)(n-[p(mUCL +−+
= α

This control chart is called a T 2-chart. By using one of 
these charts we can detect that the process is in control or 
out of control. However for more detection, we can use 
neural network A that was explained in the next section.
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Unnatural pattern recognition
This network is the responsible for recognizing type of 

unnatural pattern. It is a general propose neural network 
that is applied if an unnatural pattern in collected data was 
detected. For describing the proposed method the stages of 
application of neural networks including selecting feature 
vectors, designing the network architecture, training and 
parameter setting and Performance evaluation are briefly 
explained below.

Selecting input feature vector
The selection of the feature vector in training set 

significantly affects the performance of an NN. The 
input feature vector must be able to intensify the pattern 
feature of the data set. Most of researches input raw 
data into a recognizer as an input feature vector but in 
this study, the statistical features to be extracted from 
the raw data are added to the input vectors. The use of 
individual data usually results in a higher Type I error 
(i.e., shorter in-control ARL), it can reveal an out-of-
control situation quickly (i.e., lower Type II error). In-
control ARL means the average number of observations 
that must be taken before an observation indicates an 
out-of-control condition when the process is actually in 
control. In a high-speed automatic production scenario, 
detecting and correcting the inceptive problem as early 
as possible is important in preventing the possible high-
speed manufacturing of defects. Battiti [17] and Smith 
[18] showed that the BPN integrating raw data and 
statistical features as input feature vectors has improved 
performance. Montgomery [1] implemented a two-level 
resolution IV fractional factorial experimental design for 
screening and selecting a minimal set of representative 
statistical features from a list of 10 candidate features. 
Hassan et al. [19] conducted an experimental study and 
indicated that the BPN using statistical features as input 
vectors has better performance than those of the other 
BPN using raw data as input vectors. In this experiment, 
we implement Mean, Standard deviation, Skewness, 
Mean-square value, Autocorrelation and CUSUM with 
raw data as an input feature vector.

Among various out of control conditions, this study is 
concerned with mean shifts and trends. For this propose, 
two neural networks were employed to establish two 
special-purpose CCP recognizers for mean shifts and 
trends. When special disturbance at time dt (zero when no 
unnatural pattern present) occur at time tη

 

the observations 
X of a quality characteristic is expressed as follows:

X (t) = μ + Y (t) + d ( t, tη )   t ≥ tη	 (4)
Where
X (t) quality characteristics measured at time t,
μ process mean vector when the process is in control,
Y (t)		 N ( 0, ∑ ),
d ( t, tη ) = u × b
u parameter to determine the position of shifting 
(u=0 before shifting, u=1 after shifting). 

b = ( k1σ1, k2σ2,...., kpσp)

 where kl is the magnitude of shifts in terms of σl ,  
which is the lth quality characteristic. d ( t, tη ) = s × t

s = ( r1σ1, r2σ2,...., rpσp )
 
where rl is the trend slope in terms of σl , which is the 

lth quality characteristic. Herein each subgroup had ten 
samples. The feature vector comprises raw observations  
Xij

 

and the corresponding features.
This study considers seven distinct types of shift and 

seven distinct types of trend associated with the lth quality 
characteristic; hence kl has seven possible values, from 
-3 to +3 in increments of one and rl has seven possible 
values, from -0.3 to +0.3 in increments of 0.1 (shown in 
Table 3). By having p quality characteristics, 7p – 1 types 
of shift and 7p – 1 types of trend can be considered.

In this study, a process with tree variable is considered, 
which is just an example of a limited case of the general 
multi SPC when p, the number of variables, equals 3. 
As an example of in a treevariate process with mean 
vector  (μ1, μ2, μ3) and covariance matrix ∑, there are 
three (73 – 1) abnormal classes of patterns for shift and 
trend. The reference mean vector and covariance matrix 
for simulated example are: 

(μ1, μ2, μ3) = (0, 0, 0,), 















=Σ

215.0
135.1
5.05.11

Designing the network architecture
Artificial neural networks consist of numerous 

interconnected simple processing elements called 
neurons, which are often organized into a sequence of 
layers. All layers of the network are linked by weights. 
These weights are adapted in a supervised or unsupervised 
learning for exhibiting a desired behavior, by iterating 
through several input–output vectors. The fundamentals 
of ANNs can be found in Zurada [20].

The size of the input feature vector that is referred as 
the identification window size can significantly influence 
the performance of the proposed model. A small input 
feature vector will typically detect unnatural patterns 
more quickly, and may also yield a short in-control ARL 
(equivalent to a high Type I error). A large window can 
reduce the recognition efficiency by increasing the time 
required to detect patterns (higher Type II error, or longer 
out-of-control ARL). The suitable feature vector size here 
should balance the Type I and Type II errors. Preliminary 
experiments were implemented to choose an appropriate 
size of moving window. A threshold value ( ]1,0[∈λ ) 
was implemented to the outputs of two neurons in the 
output layer. Any value above λ was considered to sign 
the presence of an unnatural pattern. With an in-control 
state, a Type I error occurred when any of the output 
values from the output neurons were equal to or greater 
than λ. A window size of 12, which corresponds to an in-
control ARL of 364 when λ = 0.9, was selected to give 
the proposed model a similar in-control ARL to that of 
a typical Shewhart chart (3 σ limits), which has an in-

control ARL of about 350.
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This recognizer is a four-layer BPN that has 18p 
nodes that are used as input data for 12 consecutive 
points in a control chart (e.g. for each variable, 12 
consecutive points + 6 features = 18 nodes). The output 
layer comprises 2 neurons that they are used for trend and 
shift. The outputs of the recognizer were scaled within 
[0, 1], where 1 means that the data are totally fitted to 
a particular CCP. Two hidden layers both comprise 12p 
neurons. The experiments showed that the learning 
results are amended as the number of hidden neurons 
is increased. Though, increasing the number of hidden 
neurons over 14 does not amend learning but instead 
increases the training time. In addition, using more than 
the necessary number of neurons is also damaging for 
the network to generalize. The hyper tangent (tansig) 
function was used as the activation function of the hidden 
layers and sigmoid (logsig) function was used for output 
layer.

Training and parameter setting
Effective learning for a Backpropagation Network 

depends on supplying of enough training examples. In 
this research, the Monte–Carlo simulation method was 
used to generate the required data sets of normal and 
abnormal examples for training and testing. However 
collecting various data from real-world manufacturing 
systems is better than Multivariate simulation. 
Nevertheless, simulation does provide a platform from 
which investigation into potential problems associated 
with occurrence and detection of abnormal patterns 
in a multivariate system can begin [21]. For each CCP 
parameter setting, 70 examples were generated using 
CCP example simulator for training. This quantity that 
can change with number of quality characteristics was 
determined by an experimental study that revealed that 
increasing the number of examples did not significantly 
improve the learning performance. Thus according to 
types of unnatural patterns 70 (7p – 1) = 70 (73 – 1) = 
23940 training examples must be generated. 

To ensure the large shifts and trends are detected 
quickly, the starting point of large shift and trend was set 
at point 8 to 12 of the recognition window randomly. On 
the other hand, the starting point of the small shifts and 
trends was set at the beginning of the recognition window

The initial weights were randomly set between 
[-0.01, +0.01]. The epochs of the iteration were 350. The 
learning rate and momentum factor were set to 0.15 and 
0.3, respectively. These NN training parameters were set 
mainly based on trial-and-error experiments performed to 
determine the best NN training parameters, however for 
more investigation for parameter setting interested readers 
are referred to Guh [22] that used the genetic algorithm 
(GA) to evolve the NN structure, while simultaneously 
determining a training parameter set (including learning 
rate, momentum factor, initial range of weights and 
others) to yield efficiently a near-optimal NN model 
for the specific application encountered. Barghash and 

Santarisi [23] also attempted to explore the effect of the 
training parameters on the performance of the NNs. Their 
results showed that many parameters usually assigned by 
experience have significant effect on the performance of 
the NN.

This study implements the Levenberg–Merquardt 
Quasi-Network approach because based on Principe et al. 
[24] research the Levenberg–Merquardt Quasi-Network 
method is particularly appropriate for training ANNs 
with Mean Square Error. A convergence condition was 
established when the classification rate, the number of 
correctly identified training examples/total number of 
training examples, exceeded 0.96. 

By using MATLAB_ program this proposed network 
designed and trained. The Network converged after 150 
learning epochs with a final CR of 0.96 and an RMS error 
of 0.0571. The trained network was then tested using 
6270 test examples that were also generated by CCP 
example simulator but with different random seeds. The 
test result (Table 1) indicated that Network A, exhibited 
strong capability for recognizing CCPs (CR=0.94).

Table 1. Matrix of test result on the training data for 
module I

Required output

shift trend

Network
output

shift 0.958 0.067

trend 0.042 .943

Performance evaluation method
For evaluating the performance of the trained 

Network A in terms of the percentage recognized and 
ARL 50 example was generated by example simulator 
for each of unnatural pattern. Table 2 provides Aggregate 
CR and ARL with different magnitude of shift or trend. 
For having more practical state in this evaluation by a 
moving window analysis approach, it is assumed that the 
process starts under an in-control condition. The initial 
recognition window contains no unnatural CCP points. 
Unnatural CCPs begin to appear as the recognition 
window moves along the time series. The pattern features 
slowly strengthen as the recognition window moves 
forwards through the process data stream [11].

If output of this module presented a mean shift we 
implement neural network B for determining magnitude 
the shift and if presented a trend we implement neural 
network C for determining slop of the trend. If output 
of this module presented a mean shift and trend 
simultaneously, we implement both neural network B and 
C.
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Table 2. Evaluation results of neural network A

shift Aggregate CR with different 
magnitude of shift or trend

Aggregate ARL with different 
magnitude of shift or trend

1nd quality characteristic 0.946 7.35
2nd quality characteristic 0.937 7.82
3nd quality characteristic 0.951 7.63

1nd and 2nd quality characteristic 0.958 5.54
1nd and 3nd quality characteristic 0.966 5.81
2nd and 3nd quality characteristic 0.956 5.63

1nd and 2nd and 3nd  quality characteristic 0.974 4.62
trend

1nd quality characteristic 0.894 9.05
2nd quality characteristic 0.873 8.86
3nd quality characteristic 0.901 9.43

1nd and 2nd quality characteristic 0.948 6.50
1nd and 3nd quality characteristic 0.926 7.31
2nd and 3nd quality characteristic 0.961 6.73

1nd and 2nd and 3nd  quality characteristic 0.9684 6.12

Module II
This Module is the responsible on identification 

the key parameter of pattern (e.g. shift magnitude and 
slop trend). It consists of two separated specialist-NNs 
for identification the key pattern parameter. The used 
specialist-NN will be selected via according to output of 
the previous module. Any trained network can recognize 
deviated variables.

In this approach three-layer fully connected feed-
forward networks are used which implement the back-
propagation training rule developed by Rumelhart, 
McClelland, and PDP Research Group [25]. Some 
adjustments were made to improve the performance of 
the network in solving the problem considered herein. 

Designing the network architecture
In this study a three-layer fully connected feed-

forward network with aback-propagation training 
algorithm was implemented. Fig. 2 shows the neural 
network architecture, which includes an input layer with 
16p nodes that are used as input data for 10 consecutive 
points in a control chart, a hidden layer with 6p nodes and 
an output layer with p nodes. Each output node represents 
a unique target value associated with a type of shift or 
trend for a particular quality characteristic. Table 3 shows 
the relationship between target value and type of shift and 

trend associated with a particular quality characteristic. 
Cheng [26] claimed that the hyper tangent transfer 
function effectively detects process changes in different 
directions. The hyper tangent (tansig) function was used 
as the activation function of the hidden and output layers 
of NNs in Module II.

A large recognition window corresponds to higher 
recognition accuracy. The minimal window size 
that yielded satisfactory identification accuracy was 
determined empirically to be 30 (10 nodes for three 
variables or 10p). Many theoretical and simulative 
investigations of engineering applications have 
demonstrated that the number of hidden layers need not 
exceed two [27]. Since one hidden layer can approximate 
any continuous mapping from the input patterns to 
the output patterns in backpropagation network, one 
hidden layer was considered. The optimal number of 
node depends on the problem. If a network has too few 
hidden neurons, it cannot learn the training set and cannot 
generalize well. On the other hand, a network with too 
many neurons can tend to memorize the training set and 
will also damage the ability of the network to generalize. 
In this study, the number of hidden neurons was selected 
based on trial and error experiments. The proposed neural 
network was showed in Fig. 2.

Table 3. Relationship between target value and type of shift for the 
lth quality characteristic

Target 
value

Type of shift for the lth
quality characteristic

Type of trend for the lth
quality characteristic

+1 + 3σ + 0.3σ
+0.7 + 2σ + 0.2σ
+0.4 + 1σ + 0.1σ

0 0 0
-0.4 – 1σ – 0.1σ
-0.7 – 2σ – 0.2σ
-1 – 3σ – 0.3σ
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Training and parameter setting
To train the two special neural networks, 50 examples 

were generated using CCP example simulator for 
each type of unnatural pattern. This quantity that can 
change was determined by an experimental study that 
revealed that increasing the number of examples did not 
significantly improve the learning performance. Thus 
according to types of unnatural patterns 50 (7p – 1) = 
50 (73 – 1) = 17100 training examples must be generated. 

The initial network connection weight, learning rate 
and momentum coefficient were set as in Module I. During 
training, the convergence condition was reached within 

100 training epochs with a confusion matrix coefficient 
0.95. The BPN were trained by the implementation of 
back-propagation algorithm in MATLAB toolbox. 

This module implements the Levenberg–Merquardt 
Quasi-Network approach as training algorithm. The input 
vectors are implemented to the network and propagated 
forward to yield the output. Connection weights were 
adjusted after each pattern was presented. The mean 
square error (MSE) associated with the output layer is 
propagated backward through the network, by modifying 
the weights. Since numbers of example is too many Table 
4 and Table 5 details only some of the test examples.

Table 4. Matrix of shift test result on the training data for module II

shift Type of unnatural 
pattern Target value

Average output of major parameter special network

mean Aggregate Standard 
deviation errors

1nd quality 
characteristic

(+2,0,0) (+0.7,0,0) (+0.73,+0.08,+0.11) 0.180 (0.03,0.08,0.11)

(-2,0,0) (-0.7,0,0) (-0.64,-0.03,+0.09) 0.203 (0.04,0.03,0.09)

2nd quality 
characteristic

(0,+2,0) (0,+0.7,0) (+0.03,+0.74,+0.06) 0.196 (0.03,0.04,0.06)

(0,-2,0) (0,-0.7,0) (-0.07,-0.75,+0.01) 0.222 (0.07,0.05,0.01)

3nd quality 
characteristic

(0,0,+2) (0,0,+0.7) (-0.09,-0.07,+0.67) 0.214 (0.09,0.07,0.03)

(0,0,-2) (0,0,-0.7) (+0.13,+0.09,-0.78) 0.219 (0.13,0.09,0.08)
1nd and 

2nd quality 
characteristic

(+2,-2,0) (+0.7,-0.7,0) (+0.64,-0.69,+0.03) 0.195 (0.06,0.01,0.03)

(-2,+2,0) (-0.7,+0.7,0) (-0.75,+0.71,-0.08) 0.224 (0.05,0.01,0.08)
1nd and 

3nd quality 
characteristic

(+2,0,-2) (+0.7,0,-0.7) (+0.69,-0.10,-0.74) 0.234 (0.01,0.1,0.04)

(-2,0,+2) (-0.7,0,+0.7) (-0.74,+0.06,+0.72) 0.246 (0.04,0.06,0.02)
2nd and 

3nd quality 
characteristic

(0,+2,-2) (0,+0.7,-0.7) (+0.07,+0.67,-0.64) 0.216 (0.07,0.03,0.06)

(0,-2,+2) (0,-0.7,+0.7) (+0.08,-0.73,+0.67) 0.240 (0.08,0.03,0.03)
1nd and 2nd 

and 3nd  quality 
characteristic

(+2,-2,+2) (+0.7,-0.7,+0.7) (+0.74,-0.75,+0.64) 0.289 (0.04,0.05,0.06)

(-2,+2,-2) (-0.7,+0.7,-0.7) (-0.69,+0.76,-0.77) 0.273 (0.01,0.06,0.07)

 

1,1iX  
Input layer (16p) 

Hidden layer (10p) 

Output layer (p) 

tansig 

tansig 

Fig. 2. shows the neural network architecture

Xi10,1
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Xi1,p

Xicusum,p
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Table 5. Matrix of trend test result on the training data for module II

Type of unnatural 
pattern

Target value Average output of major parameter special network

Trend mean Aggregate Standard 
deviation

errors

1nd quality 
characteristic

(+0.2,0,0) (+0.7,0,0) (+0.67,-0.07,+0.09) 0.169 (0.03,0.07,0.09)

(-0.2,0,0) (-0.7,0,0) (-0.74,-0.13,+0.12) 0.198 (0.04,0.13,0.12)

2nd quality 
characteristic

(0,+0.2,0) (0,+0.7,0) (+0.10,+0.74,-0.06) 0.231 (0.1,0.04,0.06)

(0,-0.2,0) (0,-0.7,0) (+0.08,-0.74,+0.08) 0.206 (0.08,0.04,0.08)

3nd quality 
characteristic

(0,0,+0.2) (0,0,+0.7) (-0.07,+0.09,+0.77) 0.257 (0.07,0.09,0.07)

(0,0,-0.2) (0,0,-0.7) (-0.07,-0.11,-0.67) 0.243 (0.07,0.11,0.03)
1nd and 

2nd quality 
characteristic

(+0.2,-0.2,0) (+0.7,-0.7,0) (+0.66,-0.78,+0.03) 0.285 (0.04,0.08,0.03)

(-0.2,+0.2,0) (-0.7,+0.7,0) (-0.75,+0.71,+0.11) 0.176 (0.05,0.01,0.11)
1nd and 

3nd quality 
characteristic

(+0.2,0,-0.2) (+0.7,0,-0.7) (+0.76,-0.09,-0.67) 0.213 (0.06,0.09,0.03)

(-0.2,0,+0.2) (-0.7,0,+0.7) (-0.73,-0.15,+0.79) 0.246 (0.03,0.15,0.09)
2nd and 

3nd quality 
characteristic

(0,+0.2,-0.2) (0,+0.7,-0.7) (-0.12,+0.73,-0.73) 0.261 (0.12,0.03,0.03)

(0,-0.2,+0.2) (0,-0.7,+0.7) (+0.05,-0.79,+0.71) 0.232 (0.05,0.09,0.01)
1nd and 2nd 

and 3nd  quality 
characteristic

(+0.2,-0.2,+0.2) (+0.7,-0.7,+0.7) (+0.64,-0.79,+0.68) 0.275 (0.06,0.09,0.02)

(-0.2,+0.2,-0.2) (-0.7,+0.7,-0.7) (-0.76,+0.65,-0.76) 0.291 (0.06,0.05,0.06)

Performance evaluation of Module II
For evaluating the performance of module II the 

simulated examples were run. This performance 
evaluation was performed at the same time as that of 
Module I, which assumes that the process begins in an in-
control condition, was applied in the evaluation process 
herein.

average 
error

Aggregate 
Standard deviation 

of average error

shift (0.0731, 0.0728, 0.0723) 0.0216

trend (0.0741, 0.0758, 0.0731) 0.0231

Table 6. Evaluation results of neural network B & C

Case study
For implementing the proposed approach, consider 

the part that is shown in Fig. 3. In this part the plans A 
and B shown are finished on the same machine having 
the same tool holder.  This part is assembled with other 
parts and these two heights are correlated to each other 
with the correlation coefficient 0.65. These two heights 
are considered as χ1 and χ2, thus we have a control chart 
pattern recognition problem with two variables.

Fig. 4 shows the heights of 35 consecutive batches of 
the part for each quality characteristic respectively. The 
in-control mean and standard deviation of the process 
for plan A are 0.3750, 0.0062 and for plan B are 0.8130, 
0.0096 respectively. The UCL and LCL are calculated to 
be 0.3936 and 0.3564 for χ1, 0.8418 and 0.7842 for χ2 
respectively. An assignable cause a shift the mean χ1 to 
0.3874 (displacement of the mean = +2σ) at sample No. 
25 and a trend for χ2 (slope of trend = –2σ) at sample No. 
25 too. Fig. 4 shows the individual control charts and Fig. 
5 shows  χ² control chart for these observations.

If we presented collected data to the proposed model 
in real-time with window size 10, Output of network A 
shown in Table 7 detected an unnatural pattern in 33-th 
observation. We can see a shift in χ1 and trend in χ2 . With 
these simultaneous deviations (trend and shift) in quality 
characteristics, ones may be able to recognize cause 
of deviations but for more accurate results outputs of 
network B and C must be analyzed. Network B recognizes 
a shift magnitude +2σ approximately in χ1 and network 
C recognizes a trend slope – 0.2σ approximately in χ2 . 
These results are highly correlated with real situations.

Fig. 3. Plans A and B in typical part.

Table 6 summarizes the average errors and Aggregate 
Standard deviation of average error of the CCP parameter 
identification. Table 6 shows that the overall performance 
of CCP parameter identification is reasonably good. 
Notably, the results here were calculated only for the 
CCPs whose type was correctly recognized by Module I.
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CONCLUSION

Unnatural CCPs provide clues to potential quality 
problems at an early stage, to eliminate defects before 
they are produced. A modular based neural network was 
presented for control chart pattern recognition problem 
herein that can be used for multi variate process. general-
neural network was implemented in the first module 
for recognizing, type of unnatural pattern. Then two 
special-neural networks for shift mean and trend were 
implemented for recognizing magnitude of mean shift 
and slope of trend for each variable simultaneously. The 
performance of the proposed approach has been evaluated 
using a simulated example and case study. The results 
confirm that the proposed method provides an excellent 
rate of classification and the output generated by trained 
network is strongly correlated with the corresponding 
actual target value for each quality characteristic. The 

NO. Output A Output B Output C NO. Output A Output B Output C
1-10 (0.0896, 0.0225) - - 21-30 (0.5042, 0.5333) (+0.43, -0.04) (+0.08,0.53)
2-11 (0.0067, 0.0659) - - 22-31 (0.6176, 0.6674) (+0.52, +0.06) (+0.18, 0.49)
3-12 (0.0665, 0.0561) - - 23-32 (0.8015, 0.7113) (+0.51, +0.10) (-0.03, 0.51)
4-13 (0.0099, 0.0084) - - 24-33 (0.9118, 0.8155) (+0.56, -0.13) (+0.07, 0.55)
5-14 (0.0428, 0.0329) - - 25-34 (0.9191, 0.9185) (+0.62, -0.07) (-0.05, 0.63)
6-15 (0.0190, 0.0246) - - 26-35 (0.9259, 0.9144) (+0.78, +0.06) (+0.03, 0.62)
7-16 (0.0190, 0.0246) - - 27-36 (0.9239, 0.9278) (+0.70,+0.09) (+0.02, 0.68)
8-17 (0.0428, 0.0329) - - 28-37 (0.9275, 0.9346) (+0.69,-0.01) (-0.08, 0.71)
9-18 (0.0212, 0.0283) - - 29-38 (0. 9213, 0.9379) (+0.71,-0.02) (-0.10, 0.72)
10-19 (0.0216, 0.0264) - - 30-39 (0.9279, 0.9434) (+0.77,+0.12) (-0.11, 0.70)
11-20 (0.0431, 0.0245) - - 31-40 (0.9375, 0.9448) (+0.63,+0.03) (-0.05, 0.71)
12-21 (0.0190, 0.0246) - - 32-41 (0.9465, 0.9425) (+0.67,-0.06) (-0.06, 0.72)
13-22 (0.0833, 0.0258) - - 33-42 (0.9412, 0.9614) (+0.66,+0.03) (+0.01, 0.75)
14-23 (0.0330, 0.0131) - - 34-43 (0.9636, 0.9673) (+0.64,-0.04) (+0.05, 0.71)
15-24 (0.0951 0.0282) - - 35-44 (0.9675, 0.9546) (+0.71,-0.01) (-0.09, 0.68)
16-25 (0.0431, 0.0245) - - 36-45 (0.9532, 0.9562) (+0.72,+0.08) (+0.05, 0.73)
17-26 (0.1274, 0.1676) - - 37-46 (0.9634, 0.9564) (+0.70,+0.09) (-0.03, 0.68)
18-27 (0.2282, 0.1773) - - 38-47 (0.9712, 0.9614) (+0.71,-0.01) (+0.06, 0.69)
19-28 (0.3246, 0.3205) - - 39-48 (0.9636, 0.9785) (+0.68,+0.04) (-0.02, 0.72)
20-29 (0.4192 0.4130) 40-49 (0.9675, 0.9805) (+0.73,+0.03) (-0.09, 0.75)

Table 7. outputs of network A, B and C for case study

Fig. 5. χ² Control chart for χ1 and χ2 for presented part

Fig. 4.  Individual control chart for χ1 and χ2 for presented part
a) Displacement of the mean is + 2σ for χ1  b) slope of trend is –2σ for χ2

main contribution of this study is that model can identify 
shift and trend of quality variables simultaneously and 
identify the major parameter for each deviated quality 
variable (magnitude the shift or slope of trend).
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