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Abstract 

In undergraduate courses such as engineering mechanics and modelling and simulation, students mostly use 

Newton’s second law to derive equations of motion in dynamics problems. However, it might be easier and faster in 

some dynamics problems to use Lagrange’s equation instead of Newton’s second law.  To analyze the reason of this 

situation we will compare the general features of each type of these methods from different aspects. Then we will 

apply both to some examples and indicate the differences and levels of difficulty accompanying the application of 

each technique. Three examples from mechanical systems and one example from electrical systems are presented 

here to show the basic differences between Newton’s second law of motion and Lagrange’s equation. Three 

examples include a system with a single degree of freedom (translational), two degrees of freedom and multiple 

degrees of freedom in translation and rotation. For electrical systems, a two degrees of freedom circuit with dual 

portions is explained using Lagrange’s equation and Kirchhoff law. The advantages and disadvantages of each 

approach and how the principal concepts in system dynamics are explained to the students are also highlighted. 
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Introduction 

The main objective of modelling any dynamical system is to find the equation of motion of the system 

components to identify the size of the actuators. The equation of motion is a relation between mass, force 

and acceleration in translational motion or Inertia or torque and angular acceleration in rotational motion. 

The equation of motion of any dynamical systems is very important in controlling the system using the 

classical control theory. In the absence of the equation of motion, we have to apply evolutionary algorithms 

to control the dynamical systems. In modelling, we have two major approaches: Newton’s second law of 

motion based on momentum quantity which is a vector approach and Lagrange’s equation based on energy 

principle. Newton’s laws first appeared in his masterpiece, Philosophiae Naturalis Principia Mathematica 

(1687), commonly known as the Principia [1]. Newton's second law of motion pertains to the behavior of 

objects for which all existing forces are not balanced. It states that the acceleration of an object is directly 

proportional to the net force affecting the object and inversely proportional to the mass of this object [1].  

From mathematical point of view, Newton’s second law is a vector second order ordinary differential 

equation that can be reduced to more than one scalar second order differential equations. Each scalar 

ordinary differential equation represents motion equation in certain direction. Two integration steps are 

needed later to reduce the differential equation to algebraic equation.  While Lagrange’s equation, which is 

based on energy principles, involves number of first order partial differential equations depends on the 

number of required generalized coordinates in a certain application. This could be one of the reasons why 

fresh engineering students are directed to use Newton’s method instead of Lagrange’s method.   

From physics point of view, when a student applies Newton’s second law to derive equation of motion of a 
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dynamical system, he usually feels the physics of the problem. For example, a student should determine the 

direction of a force to write its correct sign in the equation. Sometimes, this is not an easy task as the nature 

of the force, either active or resisting, is not clear from the free body diagram. The student needs to guess the 

possibility of motion direction and the rule of each force. This step cannot be done as separate from 

understanding the physics of the problem. However, this process becomes more and more difficult when the 

number of forces affecting one body increases or the problem itself includes more than one body. In this 

situation, Lagrange’s equation invented by Joseph-Louis Lagrange is the best choice for easy and direct way 

to obtain the equation of motion of the dynamical systems. 

Joseph-Louis Lagrange (1736- 1813, Paris, France), Italian French mathematician who made great 

contributions to number theory and to analytic and celestial mechanics introduced the principle of energy 

approach in modelling dynamical systems. His most important book, Mécanique analytique (1788; “Analytic 

Mechanics”), was the basis for all later work in this field. It is almost impossible to include examples from 

all applications to represent differences between Newton’s method and Lagrange’s method. We will focus on 

examples that are used mainly in the undergraduate curricula. However, these examples will range from 

systems with one degree of freedom to systems with multi degrees of freedom and are of gradual levels of 

difficulty. It should be noted that most of the selected examples are available already in some textbooks, but 

the comments are drawn based on the experience of the authors in teaching undergraduate and postgraduate 

engineering courses. 

It is the main objective of this study to compare the famous two mathematical modelling techniques in 

deriving equations of motion of mechanical dynamical systems: Newton’s second law of motion and 

Lagrange’s Equation. Also, the application of Lagrange’s equation in electrical systems using system 

similarity is also investigated. Procedure, merits and difficulties are also highlighted. This paper is organized 

as follows: Section (1) is the introduction. Section (2) contains four examples, and they are modelled using 

both momentum and energy. Discussion about advantages and disadvantages, and limitation of each 

technique are presented in section (3). Section (4) is the concluding remarks followed by references.  

2. Case Studies 

2.1 Example 1 

consider a system with single degree of freedom in which a mass m slides on inclined smooth surface of 

angle   where spring and dashpot resist its motion as shown in Figure 1. 

 

Fig. 1 a system with single degree of freedom 

As the mass moves in a straight line on the surface, one equation of motion is required to describe its 

rectilinear motion.  

2.1.1    Newton’s method 

To derive the equation of motion using Newton’s second law a student needs to follow the following steps: 
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1) Draw the free body diagram of the mass showing all external forces. 

2) Determine the direction in which Newton’s second law will be applied. 

3) Determine acceleration and forces components in this direction. 

4) Identify nature of each force whether it is assisting or resisting motion. 

The equation of motion in the direction x down the surface will be.    

 (1) 

Where the displacement x is measured from an arbitrary reference. When considering only the 

displacement from equilibrium position x the component of the weight will be canceled out by the initial 

static spring force. Then equation (1) becomes in its final form 

 (2) 

2.1.2 Lagrange’s Equation 

 

Lagrange’s equation is one of the easiest and most straight forward technique to obtain the equations of 

motion in any dynamical system. This method can be applied for any number of degrees of freedom either 

for translation or rotation motion. The method consists of five known steps in a clear and precise manner and 

the students can find the equation of motion accurately. Once the generalized coordinates are selected, the 

technique can be applied to find equation of motion related to each generalized coordinate. The Lagrange’s 

Equation is given by [2]: 

. . . . . .
( ) ( ) ( ) ( ) j

j j j j

d K E K E P E R
Q

dt x x x x

   
   

   
 (3) 

Where K. E. is the kinetic energy, P. E. is the potential energy, xj is the generalized coordinate, Qj is the 

generalized force associated with generalized coordinate, and R is any dissipative energy. Considering the 

displacement along the inclined surface x as the only generalized coordinate, then: 

1) Identify generalized axis  x 

2) Identify generalized forces associated with generalized axes to be zero if we start from the equilibrium 

position  

3) Kinetic Energy of the system 

21
. . ( )

2
K E m x  (4) 

4) Potential Energy  

21
. . ( )

2
P E k x  (5) 

5) Resistance R as dissipative energy  

21
( )

2
R c x  (6) 

Substitute from equations (3-5) into equation (6) yields: 

0mx cx kx    (7) 

It should be noted that as long as the stiffness elements are linear, we can ignore the gravitational force mg 

if we measure all displacements from the static-equilibrium positions corresponding to no inputs except 

x sin x xm W k c  

mx kx cx  
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gravity [3]. 

2.2 Example 2 

A side view of a car of mass on a straight road is shown in Figure 2 (a) [4]. The vertical bounce and rotation 

of the car body about its center of gravity will be studied. The forward motion of the car which depends 

mainly on the engine force will not be studied and assumed to be independent of the previous motions. The 

car body will be assumed rigid during oscillations and the front and rear suspensions are assumed to be linear 

springs. In addition, the road will be assumed smooth. 

2.2.1 Newton’s method 

Figure 1 (b) shows the free body diagram of the car at general vertical and angular displacements. From 

the geometry the deflection in the forward and rear springs are 1(x θ)l   and 2(x θ)l  respectively as θ  is 

a small angle. 

 

 

                                                                                                                           

(a) (b) 

Fig. 2 (a) bouncing car on a road [4] (b) free body diagram 

in case of rotation and vertical bouncing 

Following the same steps of the first example and understanding the basic assumptions, such as small 

angular displacement. The acceleration equation in the vertical direction is  

1 2x (x θ) ( θ x)f rm W k l k l      (8) 

Where fk and rk are the front and rear spring stiffnesses respectively. Similarly, the moment equation about 

the center of gravity gives the equation of the pitching motion. 

1 1 2 2θ (x θ) (x θ)C f rI k l l k l l     (9) 

Where IC is the mass moment of inertia of the car. As the above equations satisfy the equilibrium conditions, 

the weight can be eliminated from equation (8) when considering only deviations from equilibrium i.e. x  

and  . In such a case the above equations can be rewritten as: 

1 2( ) ( )f rmx k x l k x l       (10) 

1 1 2 2( ) ( )C f rI k l x l k l x l       (11) 

2.2.2 Lagrange’s Equation 

If we assume that the motion starts from the equilibrium position, the gravity effect can be ignored as it will 

be balanced by the static deflections of the two springs. The same definition of the displacements at each end 
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of the car is applied here. To calculate the equations of motion for the half care suspension system we need 

to make five steps as follows: 

1) Identify Generalized axes θ, x 

2) Identify generalized forces associated with generalized axes 0, 0,  

3) Kinetic Energy of the system 

2 21 1
. . ( ) (

2 2
)CK E m x I    

(12) 

 

4) Potential Energy of the system  

2 2

2 2

1 1
. . ( ) ( )

2 2
r fP E k x k x      (13) 

5) Resistance R (No viscous damping is used)  

0R   (14) 

The Lagrange’s equation is given by [2]: 

. . . . . .
( ) ( ) ( ) ( ) j

j j j j

d K E K E P E R
Q

dt q q q q

   
   

   
 (15) 

For  ,   

 
. . . . . .

( ) ( ) ( ) ( ) j

j j j j

d K E K E P E R
Q

dt    

   
   

   
 (16) 

Substituting for kinetic and potential energies into Lagrange’s equation and after some algebraic 

manipulation yields: 

2 2 1 1( ) ( ) 0C r fI k x k x        (17) 

For x: 

2 1( ) ( ) 0r fm x k x k x       (18) 

If the motion starts from reference position, the right-hand side of equation (18) will be W instead of zero. 

2.3 Example 3 

The 4 degrees of freedom idealized model of a half car suspension system is shown in Figure 3. These four 

degrees of freedom are vertical translation and plane rotation of the car body and vertical translation of each 

axle [5], where: m1, m2, m3 is car body, front axle, rear axle masses, respectively, Ic is car body moment of 

inertia for plane rotation about center of mass, x1 and θ are car body vertical translation of center of mass x1, 

and rotation θ which is assumed small, x2 and x3 are vertical translations of front and rear axles. k’s, and c’s 

are main suspension and tire spring and damping constants, ɑ2 and ɑ3 are distances from car body center of 

mass to point of attachment of front suspension and rear suspension respectively, xf(t) is instantaneous height 

of road relative to a smooth road under front wheel and xr(t) is instantaneous height of road relative to a 

smooth road under rear wheel. 
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Fig. 3 Idealized model of a 4 degrees of freedom automobile-suspension system [5] 

This example is more general than the previous example, as it includes the masses of axles, spring like 

behavior of tires, and all damping effects. Thus, it approaches more the real half car suspension system and 

let students link their study in engineering mechanics to real life problems [6]. Also, in this example, it 

becomes more difficult for a student to imagine the motion of each individual mass apart from other masses. 

2.3.1 Newton’s method 

Since the system is of four degrees of freedom a student needs to write four acceleration equations. After 

sketching the free body diagram of the car body and each axle mass, we can apply Newton’s second law to 

obtain the equations of motion. In this example, we will start directly assuming all displacements are taken 

from equilibrium condition. As a result, the gravitational force of any mass will disappear from its motion 

equations. Solution steps can be listed as follows:  

1) Indicated the positive displacement direction of each mass, either translational or rotation 

2) Draw the free body diagram for each mass. 

3) Determine deflection in each spring and displacement derivative in each damper based on step 1. 

4) Start writing the equation of motion of each mass according to the order of variable in the state 

vector. 

Applying Newton’s second law on the car body in the vertical direction gives 

1 1 1 2 1 2 2 3 1 3 1 2 1 2 2 3 1 3( ) ( ) ( ) ( )m x c x x a c x x a k x x a k x x a                (19) 

considering clockwise direction as positive, the moment equation about the body center leads 

1 2 2 1 2 2 3 3 1 3 1 2 2 1 2 2 3 3 1 3( ) ( ) ( ) ( )cI c a x x a c a x x a k a x x a k a x x a                 (20) 

Equations of motions of the masses , will be  

2 2 1 2 1 2 4 2 1 2 1 2 4 2( ) ( ) ( ) ( ( ) )f fm x c x x a c x x k x x a k x t x             (21) 

3 3 2 3 1 3 3 3 2 3 1 3 3 3( ) ( ) ( ) ( ( ) )r rm x c x x a c x x k x x a k x t x             (22) 

2.3.2 Lagrange’s method 

To calculate the equations of motion for the half car suspension system we need to make five steps as 

follows: 

1) Identify generalized axes x1, θ, x2, x3 

2) Identify generalized forces associated with generalized axes to be equal to zero. 

3) Kinetic Energy of the system 

2m 3m
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2 2 2 2

1 1 2 2 3 3

1 1 1 1
. .

2 2 2 2
CK E m x I m x m x       (23) 

4) Potential Energy of the system 

2 2 2 2

1 1 2 2 4 2 2 1 3 3 3 3

1 1 1 1
. . ( ) ( ( )) + ( ) ( ( ))

2 2 2 2
f rP E k x a x k x x t k x a x k x x t           (24) 

5) Resistance R   

2 2 2 2

1 1 2 2 4 2 2 1 3 3 3 3

1 1 1 1
( ) ( ( )) + ( ) ( ( ))

2 2 2 2
f rR c x a x c x x t c x a x c x x t           (25) 

Lagrange’s equation for  ,   

 (26) 

Upon substituting for Kinetic and Potential energies into Lagrange’s equation and after some algebraic 

manipulation yields: 

1 2 1 2 2 2 3 1 3 3 1 2 1 2 2 2 3 1 3 3( ) ( ) ( ) ( ) 0CI c a x a x c a x a x k a x a x k a x a x                  (27) 

For x1: 

1 1 1 1 2 2 2 1 3 3 1 1 2 2 2 1 3 3( ) ( ) ( ) ( ) 0m x c x a x c x a x k x a x k x a x                 (28) 

For x2: 

2 2 1 2 1 2 4 2 1 2 1 2 4 2 4 4( ) ( ) ( ) ( )f fm x c x x a c x k x x a k x k x t c x t            (29) 

For x3: 

3 3 2 3 1 3 3 3 2 3 1 3 3 3 3 3( ) ( ) ( ) ( )r rm x c x x a c x k x x a k x k x t c x t            (30) 

 

2.4 Example 4 Electrical System 

The standard way of modelling electrical circuits is applying Kirchhoff’s law for any node (junction) in an 

electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that 

node; or equivalently: The algebraic sum of currents in a network of conductors meeting at a point is zero. 

Thus, we assume the current passes through each portion of the electric circuit and write down the 

components equations (Capacitance, Inductance and Resistance), then applying Kirchhoff’s law to find the 

governing equation of the system. For the comparison, the governing equation of the electric circuit will be 

obtained using Kirchhoff’s law and Lagrange’s equation as well. 

Wells in 1938 briefly presented a convenient form of the Lagrangian equation applicable for Electrical 

circuits and illustrated their use with a number of examples [7]. Panuluh and Damanik formulated the 

Lagrangian for the LC, RC, RL, and RLC circuits by using the analogy concept with the mechanical problem 

in classical mechanics formulations [8]. They showed that the Lagrangian for LC and RLC circuits are 

composed of terms that can be assigned as kinetic energy and potential energy terms in corresponding with 

the Lagrangian of a physical system in classical mechanics. Sira-Ramirez et al., 1996 used Lagrangian 

formalism to model DC-to-DC power converters with switch-regulation [9].  

2.4.1 Kirchhoff’s Law 

. . . . . .
( ) ( ) ( ) ( ) j

j j j j

d K E K E P E R
Q

dt    

   
   

   

https://en.wikipedia.org/wiki/Electrical_circuit
https://en.wikipedia.org/wiki/Current_(electricity)
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Consider the following electric circuit which consists of two resistances R and RL, Capacitance C and 

Inductance L with external voltage source Ua(t). It is required to find the governing equation of the electric 

circuit in state-space format: 

 

Fig. 4 Electric circuit model [9,10] 

Component’s Equation 

c L

1
,     with U (0),   ( ) with i (0),   a c L

R c c L c L RL

L

U U U
i i CDU i U U i

R LD R


      (31) 

Node Equations 

 (32) 

If we select Uc and iL as two state variables and by substituting from the component’s equation into the first 

node equations yields:  

 (33) 

Then after some algebraic manipulation: 

 (34) 

Substitute from the component’s equation into the second node equation of equation (31) yields: 

 (35) 

Equations (34) and (35) are the state-space form of the electric circuit. In matrix format: 

,        R c L RL Li I i i i  

a c
c L

U U
CDU i

R


 

1
 ( )a c

c L

U U
DU i

C R R
  

1
( )L c L LDi U i R

L
 
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 (36) 

2.4.2 Lagrange’s Equation 

The application of Lagrange’s equation can be extended to the modelling of electrical circuits using the 

same principle of energy and system similarity. For electrical systems, electrical charges may also serve as 

appropriate generalized coordinate. The word generalized coordinates enable us to select suitable parameters 

that are convenient to describe the dynamics of the system. Consider the following similarity quantities: 

2 2 21 1 1
. . ,  . . ,  ,   and 

2 2 2
c

q
K E Lq P E Lq R Rq i q v

C
      (37) 

Where L is the inductance of the circuit, C is the capacitance and R is the resistance. If we consider the 

generalized force to be the external input voltage to the circuit Q=Ua(t), then Lagrange’s equation for 

electrical systems becomes: 

 (38) 

Choosing q1 and q2 as the generalized independent coordinates, then: 

 (39) 

The total magnetic energy (Kinetic energy) of the circuit is , The total electrical energy 

(Potential energy) of the circuit is , The total dissipative energy of the circuit is 

 

Substituting the three types of energy into Lagrange’s Equation (16) for q1 and q2 yields the two equations of 

motion as follows: 

 (40) 

 (41) 

1 1

1
0

a
c c

L LL

U
DU URC C

CR
Di iR

L L

  
                   
   

. . . . . .
( ) ( ) ( ) ( ) ( )

j j j j

d K E K E P E R
u t

dt q q q q

   
   

   

1 2 1 2,    ,    ( ) ,    0a L ai q i q U t Q Q   

21
. .

2
K E Lq

2

1 2( )1
. .

2

q q
P E

C




2 2

1 2

1 1

2 2
LR Rq R q 

1 2
1 ( )a

q q
Rq U t

C


 

2 1
2 2

( )
0L

q q
Lq R q

C


  
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By using Kirchhoff’s law, one can get the same equations of motion (33 and 34) [10]. 

( ),  ( ) ( ),  

1
( ) ( ( ) )

1
( ( ) ) ,  

a c a c L c a

c L a c

c a c L

Ri U U t R i i U U t

i i U t U
R

CDU U t U i
R

    

  

  

 

Then 
( )1

( )a c
c L

U t U
DU i

C R R
    

For the second equation, 0,L L L cLDi R i U     

then 
1

( )L c L LDi U R i
L

   

It should be noticed from the first three previous examples that the application of Newton’s second law 

and Lagrange’s equation give the same equations of motion exactly. For the single degree of freedom 

system, Newton’s method is easier and straight forward with less effort compared to Lagrange’s equation. 

When the number of degrees of freedom increases, Newton’s second law of motion becomes more difficult 

and needs more kinematic analysis before applying the three equations for X, Y and moment to find the 

equations of motion. Lagrange’s equation for multiple degrees of freedom is more applicable beacuase the 

concept of generalized coordinates makes it suitable for obtaining the equations of motion even for electrical 

systems as well using system similarity. With basic differentiation and some algebraic manipulations, the 

students can find the equations of motion directly. 

Applying Newton’s second law of motion enables the students to understand the physics of the problem 

and how the internal forces that should be assumed in opposite directions can affect the equations of motion. 

It should be mentioned that for systems with springs, students can easily assign the spring force opposite to 

the possible direction of motion when they apply Newton’s second law of motion. However, for multiple 

degrees of freedom systems, the students feel some difficulties in assuming the correct direction for the 

spring and damper forces. The confusion is always there: Is it ( ) or ( ). The correct approach is 

to assume that either and start from x2 and assign the force in opposite direction of motion or 

and start from x1. The beautiful thing in applying Lagrange’s equation is we do not have this 

problem at all. Starting with any of these two assumptions will not change the terms of the equations of 

motion. This is also the case for dissipative viscous damping as well.  

Conclusions 

Deriving equation of motion using momentum principles was found straightforward in simple systems up to 

two degrees of freedom. For systems with 3 DOF and higher it is recommended to use Lagrange’s Equation 

or other energy techniques. As a vector equation, the momentum-based principle requires coordinates to 

express components of forces and accelerations. In energy principles, represented here by Lagrange’s 

equation, the most important step is to understand the motion in terms of the generalized coordinates in 

general. Then, forces and other quantities are needed to be expressed as functions of these coordinates or 

their derivatives to be included into Lagrange’s equation. Governing equations of electric circuits can also be 

2 1x x 1 2x x

2 1  x x

1 2  x x
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obtained using Lagrange’s equation. But still to reach final state-space form, a traditional Kirchhoff’s law 

should be applied. 
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