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Abstract: 
Slow focus ability and complex computations are the main barrages facing the usage of adaptive noise filtering for cancellation of 
the background noise. Here we have developed noise canceller by using  two fold over sampled filter banks. We had formulated 
the system by few realistic assumptions to  analyses  the filter. System offers a structure without cross-filters or gap filter banks 
and hence decreases the residual noise at the output. Increasing initial convergence rate is addressed and computational complexity 
is analyzed .The performance under white and colored environments, is evaluated in terms of mean square error performance. As 
a result fast initial convergence was resulted. An increase in the amount of noise reduction by approximately 5dB compared to 
full-band model reached under actual speech and background noise. In spite of the insertion of analysis/synthesis filter banks, the 
proposed noise canceller is still computationally efficient.
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INTRODUCTION

Noise can seriously damage speech communication 
especially in noisy environments like crowded streets, 
factories, noisy rooms. In this article, using the least 
mean square (LMS) algorithm of adaptive noise filtering 
and its variants are often used to adapt a full-band filter 
with a relatively low computation complexity and best 
performance. However, the full-band LMS solution 
suffers from significantly degraded performance with 
colored interfering signals due to the eigen-value spread 
of the autocorrelation matrix [1]. Moreover, as the length 
of the adaptive filter is increased, the convergence rate 
of the LMS algorithm decreases and the computational 
complexity increases. This can be a problem in 
applications such as acoustic noise and echo cancellation 
that demand long adaptive filters to model the path 
response. These issues are especially important in hand 
free communication, where processing power must be 
kept minimum [2]. Sub-band adaptive filtering using 
multi rate filter banks has been proposed in recent years 
to speed up the convergence of the (LMS) algorithm 
and to reduce the computational burden [3],[4]. In this 
approach, multi rate filter banks are used to split the input 
signal into a number of frequency bands, each serving 
as an input to a separate adaptive filter. The sub-band 

decomposition greatly reduces the update rate of the 
adaptive filters, resulting in a much lower computational 
complexity. Therefore, sub-band signals are often down 
sampled in a sub-band adaptive filter system, this leads 
to a whitening effect of the input signals and hence 
an improved convergence behavior [5]. In critically 
sampled filter banks, the presence of aliasing distortions, 
requires the use of adaptive cross filters between sub-
bands. However systems with cross adaptive filters 
generally converge slowly and have high computational 
cost, while gap filter banks produce spectral holes which 
in turn lead to significant signal distortion [6].In recent 
literature, the issue of using filter-banks to improve the 
performance of adaptive filtering is often considered from 
the view point of application to line echo cancellation in 
telecommunication systems [7],[8],[9] and [10]. In this 
paper, an improved sub-band noise cancellation system 
is derived from an existing full-band model, and then the 
application to the cancellation of background noise is 
considered. Few assumptions were made in formulating 
the system equation and deriving the optimum prototype 
filter. The proposed oversampled scheme offers a 
simplified structure that without employing cross-filters 
or gap filter banks reduces the aliasing level in the sub-
bands, and hence decreases the residual noise at the system 
output. The issue of increasing initial convergence rate 
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is addressed, and the computational complexity of the 
system is analyzed. The paper is organized as follows: 
in addition to this section, section 2 gives an overview of 
noise cancellation setup in adaptive filtering, proposing 
sub-band scheme to improve performance, section 3 
formulates the oversampled sub-band noise canceller 
,section 4 gives an efficient implementation arrangement, 
section 5 analyzes the computational complexity of the 
system, section 6 gives the optimal prototype filter design 
procedure, section 7 presents simulation results of the 
proposed noise canceller, section 8 warps up the paper 
with conclusion of main aspects.

Sub-band Adaptive Filtering in a Noise Cancellation:

The conventional noise cancellation model is shown 
in Fig.1, the noisy signal with s symbol is fed through a 
primary input, while noise with n symbol provides the 
reference input to the model, n ̇ is being added to  through 
a path P(z) producing the desired signal with d symbol, 
ideally, when steady state is reached, the error signal with  
symbol should be equal to s .[11]

The original model can be extended to sub-band 
configuration by the insertion of analysis/synthesis filter 
banks in signal paths as depicted by Fig . 2. Both input 
signals s and n are fed into identical M-band analysis k 
filter banks  Hk (z)  with  n ̇  being a filtered version of n by 
an unknown system  Here, n represents the background 
noise, s represents speech and P(z) represents the acoustic 
noise path, n being correlated with  and uncorrelated with 
s. The ultimate goal is to suppress n ̇ at the output s ̂ and to 
retain the non-distorted version of s. After D-fold down-
sampling, adaptive filtering is performed in each sub-
band separately. Adaptive filter coefficients updating can 
be done with any kind of algorithm adaptation. However, 
for robustness and k simplicity the LMS algorithm can 
be used to update the sub-band filter ŵk. Note  that , in 
contrast to the traditional noise cancellation structure, 
in this setup  is estimated using a set of parallel, 
independently updated filters ŵk  . The outputs of the sub-
band adaptive filters yk is subtracted from the sub-band 

Fig. 1. Basic model of conventional noise canceller

desired signals νk forming the subband errors ek . These 
sub-band errors are then up sampled and recombined 
in the synthesis filter bank Gk(z) , leading to the clean 
output ŝ. Faster initial convergence, and better tracking 
properties are hoped by splitting signals into sub-bands, 
and using down-sampling techniques. For colored input 
signals, with large eigenvalue spread, such as speech 
and colored noise, full-band adaptation algorithms like 
the LMS algorithm show slow convergence [12]. In the 
sub-band case the sub-band signals will have a flatter 
frequency amplitude spectrum.

The step-size of the sub-band adaptive algorithm 
can be tuned per sub-band, to improve convergence 
behavior. Another advantage of the sub-band system 
over the classical full-band adaptation is the reduction 
in the implementation cost due to the down-sampling. 
Filter banks can be designed alias-free and perfectly 
reconstructed when certain conditions are met by the 
analysis and synthesis filters. However, any filtering 
operation in the sub-bands may cause a possible phase 
and amplitude change and thereby altering the perfect 
reconstruction property. There are tradeoffs in controlling 
the aliasing effect and the amplitude distortion level; 
these issues are discussed in [13], with the aim of 
designing an appropriate prototype filter. Non-critical 
decimation has been suggested in literature to improve 
the overall performance of the filter banks Computational 
savings are maximized whenever the signals are critically 
down-sampled i. e. M=D,[14]. However, using down-
sampling factor less than the number of channels i.e. 
oversampling has the advantage of permitting the use 
of moderate order filters as well as lowering the aliasing 
distortion of the sub-band system. In oversampled sub-
band adaptive systems reduced aliasing distortion is trade 
off for extra computational costs. Depending on the level 
of oversampling, the cost of computation also increases 
significantly.

Fig. 2. Block diagram of the Sub-band noise canceller
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Background Noise Cancellation with Oversampled 
Discrete Fourier Transform Filter Bank:

Consider the arrangement of Figure 2. The noisy 
input s+ṅ is divided into subbands with aid of an analysis 
filter bank according to the following

xk=(s+ṅ )*hk (m),k=0,1,2,…,M-1                                 (1)

Where k is the decomposition index, h(m) is the 
impulse response of an finite impulse response filter FIR, 
m is a time index, M is the number of sub-bands and 
(*) is a convolution operator. In a similar manner, the 
background noise n can be split by an identical set of 
analysis filters:

nk=n*hk (m)                                                                    (2)

The background noise  is added to the speech via some 
acoustic path  such that:

ṅ=n*p(m)                                                                     (3)                                          

In z-domain  can expressed as: 

Hk(z)=∑(n=0)
(l-1)  hk(m)z(-m)                                                                                  (4)

Where  is the filter length Relation (1) can be expressed 
as: 

Xk(z)=(S(z)+Ṅ(z))Hk(z)                                                                                                                (5)

Similarly, (2) and (3) can be represented in z-domain 
respectively as:

Nk(z)=N(z)Hk (z)                                                                                                                                 (6) 

Ṅ(z)=N(z) P(z)                                                            (7)  

Relation (5) can be expanded to: 

Xk(z)=S(z)Hk(z)+N(z)Hk(z)                                                                                                         (8)

Substituting (7) in (8) yields:  

Xk(z)=S(z)Hk(z)+N(z)P(z)Hk(z)                                                                                       (9)

The decimators cause a summation of repeated and 
expanded spectrum of the input signal according to 

Vk(z)=∑l=0
D-1  Xk(z

(1/D)WD
1)                                                                                            (10)

                                                                                                                                                             
Assuming the oversampling is sufficient (two foldsucthat 
only the expanded spectrum of the decomposed signal is 
exist, this way (10) can be simplified to :

Vk (z)= Xk (z
(1/D )  )                                                                                                                     (11)

Applying this result to (9) ,

Vk(z)=S(z(1/D))Hk(z
(1/D))+N(z(1/D))P(z(1/D))Hk(z

(1/D))              (12)                           

The above relation represents the desired signal to the 
adaptive filter, now, in a similar analogy we can work out 
the reference input to the adaptive filter,
 
Nk(z

(1/D ))= N(z(1/D ))Hk (z
(1/D ))                                        (13)

Consider the adaptation process in each individual 
branch according to Figure 2, and let us define e(m) as 
the error signal, y(m) is the output of the adaptive filter 
calculated at the down-sampled rate (Dm),ŵ(m) is the 
filter coefficient vector at m th iteration, ì is the adaptation 
step-size factor , á is proportional to the inverse of the 
power input to the adaptive filter, and m is a dummy time 
index, then we have

yk(m)=Ŵk
T (m)nk(m)                                                                                             (14)              

ek (m)=vk (m) - yk(m)                                                                                                        (15) 

Ŵk(m+1)=Ŵk(m)+μk.ak.ek(m)nk(m)                                                            (16)            

Relation (16) represents the branch update of the sub-
band adaptive filter In z-domain, relation (15) can be 
expressed as:

Ek(z)=Vk(z) - Yk(z)                                                      (17)  

Substituting for Vk(z) from (12)                                      
     
Ek(z)=S(z(1/D)) Hk(z

(1/D))+N(z(1/D))P(z(1/D)) Hk(z
(1/D))-Yk(z)                                                    

                                                                                                                      
(18)   

This can be expressed as                                                     

Ek(z)=Sk(z)-Ŷk(z)-Yk(z)                                              (19)

Where Sk(z)=S(z(1/D))Hk(z(1/D)) and Ŷk(z)=N(z(1/D))P(z(1/D))
Hk(z(1/D)) ,The aim of the adaptation process is to suppress   
ŶK  (z) by equating it to Yk(z) leaving Sk(z) undistorted. 
Each sub-band error signal is then interpolated by up 
sampling and synthesis filtering. The interpolators have 
a compressing effect according to

Uk (z)= Ek (z
D)                                                    (20)                   

                                                                                                 
This will restore the spectrum of the sub-band signals, 

and hence terms in (18), to their original frequency range 
i.e. to the situation before decimation. Unfortunately, 
we will have an imaging effect due to up sampling ,  
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this can be removed from sub-band signals by suitably 
designed synthesis filters Gk(z) the output signal now 
can be reconstructed and we can state the input/output 
relationship as
                                                                                                  
Ŝk(z)=∑K=0

M-1  Gk(z) Uk (z)                                                                                                      (21)

Where    Uk(z)=S(z)Hk(z)+N(z)P(z)Hk(z)-Yk(z)         (22)                                              

Let       Rk(z)=N(z)P(z)Hk(z)-Yk (z)                            (23)                                
                                                                                 
Where R(z) represents the system residual noise On 
steady state, R(z) should be very small, and relation (21) 
can be modified to 

Ŝk(z)=S(z)∑K=0
M-1 Gk(z) Uk(z)                                      (24)

                                                                                      
The branch filters Hk(z) ,and Gk (z) can be derived from 
prototype filters H0 (z),G0 (z) according to Hk (z)= H0 (z 
WM

k ) , and Gk (z)= G0 (z WM
k  ), thus forming a DFT 

filter bank ,[15]. Where WM= e-j2π/M  .The term in ∑l=0
M-

1Gk (z)Hk(z)n  (24) represents the distortion due the 
insertion of the analysis/synthesis filter bank. Let A(z) be 
the distortion function ,in frequency domain, A(z) can be 
represented as 
                                                                                    (25)
A(ejω )=∑k=0

M-1  Hk (e
jω) Gk (e

jω)

The objective is to find prototype filter coefficients h(m,) 
and g(m) to minimize Ad (z)  According to

 Ad=max ω(1-|A(ejω ) |)                                               (26)

Relaxing the perfect reconstruction property, tolerating 
small amplitude distortion, we can have frequency 
selective filters in a near perfect reconstruction NPR filter 
bank [16]

Computationally Efficient Implementation of 
Background Noise Canceller:

From Fig. 2 it can be seen that the analysis filters are 
immediately followed by down-samplers. Hence it is 
cheaper to do all filtering operations at the down-sampled 
rate. Efficient implementation of DFT modulated filter 
banks can be done using poly phase decomposition of a 
prototype filter and fast Fourier transform (FFT).
A DFT modulated analysis filter bank with subsequent 
D-fold down-sampling can be implemented as a tapped 
P delay line with D - fold down-sampling, followed by 
poly phase components of the prototype filter Hp (z) as 
shown in Fig. 4. The synthesis bank is constructed in a 
similar fashion with inverse DFT. The analysis prototype 

filter H0(z) can be represented in polyphase components 
as follows

H0(z)=∑p=0
M-1z-k Hp (z

D)                                               (27)

                                                                                                        
The transfer function of the pth polyphase filter Hp (z)    
is given by:

Hp(z)=∑m=0
L-1  hp (m)z-m                                                                                             

                                                                                                        
(28)

Where: hp(m)=hp(mD+p),0≤p≤M-1,Lis is the filter 
length.

G0 (z)=∑p=0
M-1  Gp (z

D) z-(M-1-k)                                       (29)
                                                                                       

Effectively, the number of poly phase components 
is equal to the number of sub-bands i.e. p=k  Fig .3 
depicts an efficient implementation of the proposed noise 
canceller.

Computational Efficiency of the Oversampled Sub-
band Noise Canceller:

The total computational complexity of the sub-band 
noise canceller consists of two parts: the complexity. due 
the insertion of the filter bank CFB and the complexity 
for the adaptive filtering CAF We assume that the input 
signals  and  are real signals, the analysis and synthesis 
filtering is implemented with the poly phase uniform 
DFT filter bank. The prototype analysis/synthesis filter is 
of length L , and that M/D  is an integer. CFB  is calculated 
as follows. There are a total of M poly phase filters, 
each of length L/D operating at a rate of 1/D in the filter 
bank thus requiring LM⁄D2 real multiplications per input 
sample. This operation  is performed three times, for the 
analysis filtering of  s and n ,and for the synthesis filtering 
of e0,e1,….,eM-1 . 

The M-point DFT and IDFT are implemented with a 
radix-2 FFT which requires approximately M/2 log2M-M  
complex multiplications. For real data, the M-point 
DFT can be realized with an M/2-point FFT and M/2 
complex multiplications. This results in M/2log2M/2  
real multiplications for the analysis filtering of s and n. 
A similar realization holds for the synthesis filtering of 
e1,….,eM-1. Thus the total number of real multiplications 
for sub-band filtering per input sample is
 
 CFB=3LM/D2 +3M log2M/2                                       (30)                                                                                                        

Since the input and the desired signals are real, we 
can use the symmetry property of the DFT to process 
only (M/2) +1 of the sub-bands . Assuming the length 
of the impulse response to be modeled by the adaptive 
filter is  LA, each sub-band adaptive filter is of length LA  
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/D operating at the down-sampling rate, and the LMS 
algorithm is used for the update . The total number of 
multiplications for adaptive filtering per input sample is
 
CAF=2(2LA)/D+1)+4(M/2-1)(2LA)/D+1)/D                (31)
                                                                                                                                                    
T The total computational complexity CT for the M/D 
oversampled, M-band noise canceller is then taken as the 
sum of the filter bank complexity and the adaptive filter 
complexity

CT=(3LM+4MLA-4LA/D2 + (2M-2)/D+ 3M log2M/2
 

                                                                                (32)

Fig. 3. Efficient implementation of background noise canceller, H_(p ) (z),G_(p ) (z)are polyphase component 
of analysis and synthesis filters respectively.

Fig. 4. Computational complexity of the sub-band noise canceller In a similar way the proto-
type synthesis filter G_(0 ) (z) can be expressed in poly phase form using type 2 poly phase 
representations, thus reducing the implementation cost.

According to relation (32), the normalized computational 
complexity (Csubband /Cfullband) versus the A number of 
sub-band can be plotted as shown in Figure 4, values of  
L,and LA are 128 and 512 respectively. It can deduced 
that critically sampled systems with 4,8,16,32 sub-bands 
are computational more efficient than the equivalent 
full-band system. On the other hand, the 2×oversampled 
system are computationally efficient with 16 or 32 sub-
bands.

Prototype Filter Design:

A typical FIR causal prototype filter can be defined by 
the transfer function given by (4).The impulse response 
h(m) of this filter is truncated by multiplying by a window 
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function w(m)

h(m)=sin(2πfc (m-(L-1)⁄2) )/π(m- (L-1)⁄2)  w(m)         (33)
                                                                                   

For a given number of sub-bands,M, and for a 
given sub-sampling factor D, and for a certain length 
of prototype filter,L, we design the normalized cut-
off frequency 0<f< ½ and the corresponding window 
function.

There are several window types that can be 
investigated and used to design the prototype filters, 
examples of these windows are the Hamming, Kaisar 
,Van-Hann ,and the Dolph-Chebyshev , also algorithms 
such as the Remez exchange can also be exploited for 
the same purpose. The Kaisar, and the Dolph-Chebyshev 
windows have been reported to have a good performance 
in the presence of aliasing [13]. However, these methods 
possess additional design parameters which should be 
controlled in the optimization problem. In this paper, 
since we are highly oversampling, we assume sufficient 
sub-band separation between sub-bands does exist, 
hence negligible aliasing power, so, we focus on the use 
Hamming window for simplicity. The Hamming window 
is defined as:

                                                                
                                                                                                                                           (34)

                                     
Where  β = 0.54 ,We assume the same prototype filter 

for the analysis and the synthesis filter banks. In order 
to control the amplitude distortion the final optimization 
can be formulated as
 
 Ad

min (h(γ) )                                                                 (35)

Where γ is one dimensional variabl. Minimizing 
(35) within a tolerance yields a prototype filter in a near 
perfect reconstruction filter bank.

Simulation Results:

Prototype filter was designed using Hamming window 
with cut-off frequency specifications. Optimization 
parameters are shown in table 1 .The magnitude 
frequency response of filter bank is depicted in Fig.5. The 
acoustic noise path used in these test is an approximation 
of small room impulse response modeled by a finite 
impulse response processor of 512 taps. To measure the 
convergence behavior of the sub-band noise canceller, 
a variable frequency sinusoid was corrupted with white 
Gaussian noise. This noise was passed through a transfer 
function representing the acoustic path. The corrupted 
signal is then applied to the primary input of
the noise canceller, regarding zero mean, white Gaussian 
noise was applied to the reference input. A sub-band 
power normalized version of the LMS algorithm is used 
for adaptation. Simulation parameters are listed in Table 

2, and the simulation flow chart is given by Fig. A in 
section 7. Mean square error MSE convergence is used as 
a measure of performance. Plots of MSE were produced 
and smoothed with a suitable moving average filter. A 
comparison is made with a conventional full-band system 
as well as with a critically sampled as shown in Fig.6.

To test the behavior under environmental conditions, 
a speech signal is then applied to the primary input of 
the proposed noise canceller. The speech was in the form 
of English utterance “Vacancy, One, Two, Three” spoken 
by a women as shown in Fig.7,this speech was sampled 
at 8 kHz . Machinery noise was used as a background 
interference to corrupt the above speech as shown in 
Fig.8. Mean square error plots are produced as shown 
in Fig.9, in this figure, convergence plots of a full-band 
and critically sampled systems are also depicted for 
comparison. For sake of clarity, and due to high density 
of the graphs, Fig.9 is reproduced as in Fig.10 with the 
plot of critically sampled system was dismissed since it is 
sufficient to compare with conventional full-band model.

The first advantage of these tests is the gain in 
computational efficiency. However, as the down 
sampling factor reduced from critical case D=M , to 
the two fold oversampled situation ,where D=M/2 , the 
computational burden is greatly increased ,but for sub 
band decomposition of 16 band it is still less than the 
cost of conventional full-band system, As this is clear 
from Figure 4.From Fig.6, it is clear that the mean square 
error MSE plot of the oversampled sub-band system 
converges faster than the critically sampled and full-band 
systems. While the full-band system is still converging 
in slow asymptotic way, the oversampled noise 
canceller approaches 25 dB noise reductions in about 
2500 iterations. In an environment where the impulse 
response of the noise path is changing over a period of 
time shorter than the initial convergence period, as in the 
case considered in this paper, initial convergence will 
most affect cancellation quality. On the other hand, the 
critically sampled case needs 10000 iterations to reach 
the same level, this is obviously due to the inability to 
model properly in the presence of aliasing, With the two 
fold oversampling, reduced aliasing levels is a tradeoff 
for extra computations.
Finally, Fig.9 contains the mean square error plots for 
oversampled, critically sampled and full-band systems 
under speech and colored background noise inputs. In 
this case it is clear that the full-band system cannot model 
properly with colored noise as the input to the adaptive 
filters, and the residual error can be sever when the 
environment noise is highly colored which was proved 
to be true in these simulations. Tests performed in this 
part of the experiment proved that the oversampled sub-
band noise canceller does have better performance than 
the full-band system. It is evident from Fig.10 that the 
proposed system achieves 5 dB noise reductions better 
than the conventional single rate full-band system.
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Window type Hamming
Cut off frequency normalized 0.0313

Number of sub bands ,M 16
Down sampling factor, D 8

Length of pro type filter, L 128

Table1. Design parameters of pro type filter

Analysis filter bank type Poly phase DFT, even stacking
Synthesis filter bank type Poly phase DFT, even stacking

Acoustic noise path FIR    processor with 512 taps
Adaptation algorithm type Sub band normalized power LMS

Adaptation parameters 0.02
Primary input (first test) Variable frequency sinusoid

Reference input (first type) Additive white Gaussian noise, with zero mean and unit variance 

Primary input (second test) English Utterance Vacancy, One, Two, Three
Sampled at 8KHz

Reference input (second type) Machinery noise ,sampled at 8KHz
Performance measure method Total MSE convergence

Tale2. Simulation parameters of noise canceller tests

Fig. 5. Magnitude frequency response of DFT filter bank (even stacking)

Fig. 6. Mean square error performance of the oversampled noise canceller compared to conven-
tional full-band, and critically sampled systems, under white input.
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Fig. 7. English utterance “Vacancy, One, Two, Three” spoken by a woman.

Fig. 8. Machinery noise as a background interference.

Fig. 9. MSE convergence under actual speech and background interference.

Fig. 10. Comparison of MSE for the two fold oversampled with a conventional full-band system.
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Fig.A. Simulation Flow chart

CONCLUSIONS

In this work, an oversampled sub-band noise canceller 
is developed to overcome the problems of slow 
convergence and increased computational complexity. 
An efficient optimized two fold oversampled DFT 
filter bank was used in the canceller; the computational 
efficiency of system is analyzed. The system has shown 
better performance compared to the conventional full 
band model as well to the critically sampled scheme. 
The convergence behavior under white and colored 
environments is greatly improved. An increase in 
the amount of noise reduction by approximately 5dB 
compared to full-band model was reachable under actual 
speech and background noise. In spite of the insertion 
of analysis/synthesis filter banks, the system is still 
computationally efficient.
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