
A New High-Speed Booth Multiplier Using Modified Components

P. ASSADY

Islamic Azad University, Varamin branch, Iran

Abstract
A new multiplier has been presented. Multiplication is a basic and important building block in all arithmetic logic units. Due to

the large delay of multipliers, different methods have been designed to increase speed. In this study, a novel tree multiplier structure
is presented that has regularity of array multipliers and the efficiency of tree multipliers and is capable to implement in large
structures. In partial product generation step a new recoding technique is proposed. This algorithm efficiently decreases number
of partial products. In partial product reduction step, a modified Dadda structure is presented. This method sums partial products
efficiently and is regular. In final addition step a high-speed propagate adder is designed which adds two final operands. Simulations
are done using HSPICE and C codes. Proposed multiplier implementation decreases number of transistor count about 8.5 percent,
delay reduction is 10 percent and power dissipation is decreased 11 percent in compare with other multiplication algorithms.

Keywords: Booth, CMOS, counter, Dadda, multiplier

Internatıonal Journal of Natural and Engineering Sciences 4 (1): 73-79, 2010
ISSN: 1307-1149, E-ISSN: 2146-0086, www.nobel.gen.tr

Corresponding author
E-mail: p_asadi@iauvaramin.ac.ir, assady2@gmail.com

INTRODUCTION

In computer systems, high speed multipliers are
basic component [1]. As computer systems become more
complicated, high-speed and more accurate multipliers
have been more essential. The structure of multipliers
is different based on different systems because its
applications are different. All arithmetic logic units have
multipliers in their structure. However, the multiplication
is complicated and difficult in VLSI implementation [2,3].
Multiplication is done into two stages fundamentally.
One is the production of the partial result, and another is
summation of produced partial results to be added to the
final addition. Best way to increasing the performance
of multiplier is to decrease the number of partial results
while decreasing its production time. Because a decreased
structure has delay problem related with the production
of the partial result, the delay time in a processor without
multiplier is compared with the delay time of a multiplier
and then an architecture is chosen [4,5]. Multipliers use
adders in their structure. Designing high-speed adders
have important role in multiplier performance. Adders
are basic units that are chained in Dadda structure.
Real time system for speech, video, and other such
applications is expected due to the increasing use
of mobile systems, e.g., cellular phone, and laptop
computers. Most new used IC implementations for the

multimedia system are RISC architectures and DSP
structures. Higher-bit processor has been broadly used
in computer architecture, however could not gratify
new application areas like real-time graphic and/or web
requests. In addition, traditional 16-bit or 32-bit DSP
has been used for signal processing merely, which isn’t
appropriate for image processing and cannot implement
in real-time due to large amounts of data needed for
image and multimedia process. So, high speed multiplier
for the multimedia DSP structure or RISC system must
be used. The multiplier should be implemented to present
both fast multiplication and less hardware. High Radix
Booth’s algorithm for the multiplier is usually used and
XOR circuits, adder, Booth encoder, MUX and fast final
adder are used for high speed and low power circuit in
this project [5,6].

MODIFIED BOOTH ENCODER

In this section a new Booth encoder is presented.
Initially, we briefly review the previous modified
Booth algorithm that has been conventionally used [2].
It is designed on the encoding the two’s complement
multiplier to facilitate decrease the number of partial
results to be summed [3]. This results to high-speed
multiplier and with a reduction of hardware layout. The
modified Booth algorithms using high radix is made

Received: November 04, 2009
Accepted: Januraary 29, 2010

74 P. Assady / IJNES, 4 (1): 73-79, 2010

of the slicing of the multiplier into partly cover sets of
3-bits, as three-bit encoding, and each set is encoded to
produce the correct partial result. The multiplier, Y, in the
two’s complements form can be expressed as:

It can be rewrite using three bit structure and produced
signals are:

Calculating Y, using the modified Booth algorithm,
produces five digits. It can be calculated using above
equation, the expressions in brackets have values -2, -1,
0, 1 and 2. Each digit in the multiplier does a definite
operation on the multiplicand, X, as illustrated in Fig.
1. The multiplication of two numbers produces only 4
partial results. The partial result in this case is presented
on three groups. For the addition of a correct partial
result, the signs are expanded, as shown in Fig. 1. So, a
new modified Booth algorithm is presented that reduces
number of partial products efficiently.

MULTIPLIER STRUCTRE

In this section, a new 4-2 counter is presented. The
multiplication operation for two binary numbers, using
2’s-complement representation and high-radix Booth
algorithm is done. High radix encoding of the multiplier
means a decreasing in the number of digits

Then, the partial results multiplexer must select one out
of choices relating on the value of the following digit.
In this step, the partial result is two bits wider than the
multiplicand, resulting 24-bit partial results. The most
appropriate structure for the reduction of 8 partial results
uses only 4-2 counters [5] (instead of the conventional
3-2 counters) which is presented in Fig. 2. The eight to
two counter uses 3-2 and 4-2 counters. It has 6 logic gates
delay. The final addition must be done in a fast method, so
they are designed with carry and sum propagate adders.
Proposed multiplier design has important effect in final
results.

Fig. 1.Presented Booth encoding and multiplier structure

75P. Assady / IJNES, 4 (1): 73-79, 2010

 Fig. 2.Proposed 4-2 Counter implemented in 70 nm

PARTIAL PRODUCT REDUCTION

In this section, a modified Dadda tree is presented.
Dadda structure makes possible to have an architecture,
which does the addition step in parallel, thus resulting in
high speed. Adders include a delay proportional to the
logarithm of the operand size n, which is smaller than
the array structures [4]. On the other hand, the problem
of Dadda tree is its complicated and irregular structure in
compare with array architectures. In Fig. 3, an example
of multiplication using Dadda tree partial result reduction
algorithm is presented. It is important that parallelizing
two adder operations result in a smaller partial result
addition after only one stage [3]. A three view of the
8 input 4-2 tree has been presented. In generating 4-2
multiplier, each tree part forms a single bit slice of the
array. The regularity of 4-2 trees over 3-2 trees, therefore,
results to more performance. One cause is that regular
structures have expected capacity. Proposed multiplier
layout is showed in Fig. 4.

The first idea behind the selection of the structure is
the comparison between area, speed and power. An ideal
design should use fewer layouts but still perform high-
speed operation. From the argument of the multiplier
structure, the smallest design of the multiplier is array
multiplier, although, it is also the slowest structure. The
second idea behind the selection of the structure is the
regularity, which means the implementation can be par-
titioned into several equal components. By connecting
these components, a new circuit can be easily made. The
implementation time is considerably decreased in this
method. Large requests are performed of regular archi-
tectures to modification of the implementation process.
Regularity results a modification in design by generat-
ing specific implementations in a number of locations,
thereby decreasing the number of different implementa-
tions that require to be designed. Array multipliers with
Booth encoding are more regular than other structures. A
parallel array multiplier has many advantages. It has the

benefits of conventional array multipliers such as regular
design and minimum layout. By entering one or two par-
allel steps into the multiplier, the speed can be increased.
The speed problem of the array multiplier is solved in this
method. Logic implementation is vital in the structure of
the multiplier. First, to warranty the multiplier to oper-
ate at the high speed, the delay of the crucial path must
be computed and the needed time of entering a parallel
step should be calculated. Second, to decrease the layout
of the multiplier, different structures of adders are devel-
oped. Logic synthesis is required to experiment speed and
efficiency of the adders. The structure of the adder has to
be designed first. Then the number of the parallel steps
can be determined by the performance of the adder. The
dimension of the multiplier should be as short width as
possible if all the needs can be obtained. Final result are
calculated using

As discussed before, the usual method in all of the
partial result summation algorithms is to decrease the
m partial results to two final operands. A carry hybrid is
then designed to sum these two operands. One of the first
summation designs was the Wallace algorithm, where
counters are used to decrease 4 bits of each column to
2 bits. For 16*16 multiplications using 2*2 multiplier
productions, height is 9 and five steps of counters needed.
Dadda used the expression “counter”. Counter is a logic
network with n outputs and m inputs. The n outputs show
a binary amount of one’s entered at the inputs. The adder
in the previous Wallace tree presented in [4] is a three to
two counter.

The Wallace algorithm can be merged with shift and
add methods to implement high performance designs. A
fundamental need for such design is an appropriate flip flop

76 P. Assady / IJNES, 4 (1): 73-79, 2010

 Fig. 3..A slice of proposed partial product reduction scheme

Fig. 4..Proposed multiplier layout

77P. Assady / IJNES, 4 (1): 73-79, 2010

to save middle products. In this sentence “appropriate”
means that it does not use extra delay to the calculation.
The proposed flip flop, perform this by connect a path
from the output of a circuit to an input. Therefore, path
delay is not raised. In a given design, existing “and-or”
logic is substituted by the flip flop which also does the
“and-or” procedure. Use of this flip-flop can considerably
decrease design overheads if suitable care is taken in
implementation. Assume the multiplication of an m-bit
multiplier on an n-bit multiplicand; that is, we decrease
m partial results, each of n bits, to two final results, and
then chain the carries to obtain final result.

In the implementation of a summation tree, two
things are necessary to be solved. First, which kind of
counter structure is to be used and second, how these
designs should be used to obtain less delay. A counter
structure adds the number of ones on its inputs and sums
that number at the outputs. The simplest counter is full-
adder module, but more complex and efficient counters
have been proposed [6]. To achieve the overall short
delay, the final adder has to be with awareness designed
to the delay computed of the main outputs from the partial
result summation tree. Designed algorithms suitable for
the final adder are described by [5]. In this study, it is
limited the choice of addition structures to half adders,
full adders and high speed counters. [4] and [6] have both
computed the minimum number of counter circuits, in
a summation tree, using different counters. This lower
bound in fact matches to the hardware performance in
e.g., Dadda, Wallace, and array multiplier methods. The
counters can be designed in many methods as triangular
assignment, or rectangular assignment. The distance
between the modules in the triangular form is taken to be
a minimum layout. A triangular form is analyzed, which
makes the most appropriate performance. A triangular
form is suitable for some multiplier methods, but this will
be insignificant for the conclusion of this paper. A large
area wasted will remain regardless of form of structures.

The two important tree multipliers are those proposed
by Wallace and Dadda. Wallace proofed that the delay for
an M*M multiplier can be decreased to log M, making
more speed than the array multiplier. In Wallace’s
algorithm, a high performance adder (M adders without
carry propagate) is designed to add three rows into a
two row product with only one conventional full adder
delay. The function is done continuously to produce two
operands of partial results from M operands of partial
results for an M*M multiplier. These two rows are then
merged using a fast carry chain adder. Dadda developed
and expanded Wallace’s conclusions by nothing that
a counter can be thought of as a circuit which adds the
number of bits in the input, and then outputs that number

in binary structure. Using such an adder, Dadda assumed
that, at each step, only minimum number of summation
should be performed so as to decrease the partial results
by a factor of 0.5. In the Wallace algorithm, the partial
results are decreased very fast. In comparison, Dadda’s
algorithm does the minimum summation needed at each
step to do the summation in the same amount of steps
as needed by the Wallace algorithm concluding in an
implementation with less counters.

CARRY RIPPLE ADDER

In this section, a new final adder is proposed. A critical
part of multiplier is the final addition adder. Because
a random number of bits of the middle result could be
transferred into the lower half, this adder must be capable
to hold changeable bit-width operands. In addition, some
of the least significant bits of the middle result have
previously been decided; therefore, no addition should
be done at these bit locations. A bit, from lower stage is
used to decide which slice of the shifted middle result
is going to be determined. This bit is consequent from
the output of the priority bit, therefore other bits, which
relate to the omitted bits of the multiplier; generate a 1,
while other bits are 0. The resulting bits have as many
one’s as the number of bits that are transmitted and,
thus, as the number of bits that would be summed. It
is a carry-chain adder, where a carry-in can be used at
any bit location and one of operands can be include the
carry slice of the middle result neg or zero. Table I shows
comparison between different 54*54 bit multipliers. A
part of multiplier (8*8-bit) is simulated using HSPISE
which is shown in Fig. 5. Proposed final adder improves
final addition step of multiplier.
The carry-in of module is calculated by the
carry-out of . The carry-chain adder is layout
efficient and appropriate to implement, but is slow since
the whole latency is related to the amount of bits of the
operands. Carry lookahead adders have more speed than
carry-chain architectures, because the carry propagate
is sliced at the block edges. The worst case latency of
the carry lookahead adder is depended to the maximum
module length
and to the amount m of modules.
The optimal module slice of lookahead adders is quite
complex. If the counter is created by many small
modules then the latency through the carry-lookahead
networks may considerably reduce speed the calculation.
However, if few large modules are used then the
component latency limits the whole efficiency. Several
designs have been presented [6], to facilitate the best
trade-off between these structures, presenting that a non
homogeneous module size can be used to decrease the
latency. An extra latency optimization with regard to the
structure of Fig. 2 can be obtained by using a two-step

78 P. Assady / IJNES, 4 (1): 73-79, 2010

Table 1. Comparison between 54×54 bit multipliers

Fig. 5. Multiplier simulation results using HSPICE a) input operands (voltage) b) multiplication output (voltage) c) multiplication
output (current)

carry lookahead adder. In this case the counter is sliced
in several stages. Each slice is themselves combined by
modules of bits (see Fig. 1, which presents the way of a
slice combined by two modules). The modules have the
equal architecture of Fig. 3.
The presented counter uses domino CMOS encoded
carry bits produced by two adders. Therefore the ith
carry is showed by two bits. We describe the rise
time as the delay from the time when the output bit
become available to the last inverted bit. (i.e. =rise

time for signal which is generated should be positive (
>0)). This issue is called the rise time signal latency. In

latency-sensitive components, such an issue is analyzed.
However, because delay-sensitive structures suppose that
latencies of components and layouts are limited, the rise
time (>0) must be synthesized. Rise time logic results
latency and layout overhead. The larger this component
is, the higher the layout overhead and the larger the rise
time will be. High-performance multiplier circuitry
should be high-speed, simple with small layout overhead,

79P. Assady / IJNES, 4 (1): 73-79, 2010

and small . A latency-sensitive multiplier structure
has large layout overhead and rise time even for small
counters. The counter presented here uses a much more
high-performance logic circuit which provides a limited
latency model. While latency-sensitive circuit analyses
calculation completion of all blocks carry nodes, we try to
only analyze the completion of calculation of the blocks
middle carry structures and and use that
to single completion of calculation for the full three-bit
counter block. With used to verify output of carry
calculation of the three-bit counter block, a problem may
occur when has either a carry propagate or a carry
free condition while . In this
form may be calculated faster than other signals in
the same counter block, with the slowest signal being

 which may be use two transmission-gates latency after
.

CONCLUSIONS

Proposed algorithm has done three modifications in
conventional multiplier architectures. Multiplier design
has three important steps, which include partial product
generation step, partial product reduction step and final
addition step. In the first step of algorithm, a new modified
Booth structure is presented. This algorithm halves
number of partial results which results smaller tree in the
second step of multiplier. In partial result reduction step,
a new algorithm to sum partial results is presented. This
algorithm sums partial results very fast and it has regular
structure. In the final addition step, a new changeable
length adder is proposed which sums two final operands
in a new way which, increases speed. Simulations are
done using HSPICE and C codes. Presented 54*54-
bit multiplier delay is 3.4 ns, transistor count is 24213
and power dissipation is 0.54 mWatt in 70 nm CMOS
technology. Proposed multiplier implementation
decreases number of transistor count about 8.5 percent.
Delay reduction is 10 percent. Power dissipation is
decreased 11 percent in compare with other algorithms
[3,6].

REFERENCES

[1] W.C. Yeh and C.W. Jen, “High-speed Booth encoded
parallel multiplier design,” IEEE Transactions on
Computers, vol. 49, no. 7, pp. 692-701, July 2000.

[2] F. Elguibaly, “A fast parallel multiplier-accumulator
using the modified Booth algorithm,” IEEE
Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, vol. 47, no. 9, pp.
902-908, Sep 2000.

[3] H. Lee, “A power-aware scalable pipelined Booth
multiplier,” IEEE International SOC Conference,
pp. 123-126, Sep 2004.

[4] C. Efstathiou, H.T. Vergos and D. Nikolos, “Modified
Booth modulo 2/sup n/-1 multipliers,” IEEE
Transactions on Computers, vol. 53, no. 3, pp. 370-
374, Mar 2004.

[5] O.T.C. Chen, S. Wang and Y.W. Wu, “Minimization of
switching activities of partial products for designing
low-power multipliers,” IEEE Transactions on very
large scale integration (VLSI) systems, vol. 11, no.
3, pp. 418-433, June 2003.

[6] N. Itoh, Y. Naemura, H. Makino, Y. Nakase, T.
Yoshihara and Y. Horiba, “A 600-MHz 54*54-bit
multiplier with rectangular-styled Wallace tree,”
IEEE Journal of Solid-State Circuits, vol. 36, no.
2, pp. 249-257, Feb 2001.

