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Abstract
A new multiplier has been presented. Multiplication is a basic and important building block in all arithmetic logic units. Due to 

the large delay of multipliers, different methods have been designed to increase speed. In this study, a novel tree multiplier structure 
is presented that has regularity of array multipliers and the efficiency of tree multipliers and is capable to implement in large 
structures. In partial product generation step a new recoding technique is proposed. This algorithm efficiently decreases number 
of partial products. In partial product reduction step, a modified Dadda structure is presented. This method sums partial products 
efficiently and is regular. In final addition step a high-speed propagate adder is designed which adds two final operands. Simulations 
are done using HSPICE and C codes. Proposed multiplier implementation decreases number of transistor count about 8.5 percent, 
delay reduction is 10 percent and power dissipation is decreased 11 percent in compare with other multiplication algorithms.
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INTRODUCTION

In computer systems, high speed multipliers are 
basic component [1]. As computer systems become more 
complicated, high-speed and more accurate multipliers 
have been more essential. The structure of multipliers 
is different based on different systems because its 
applications are different. All arithmetic logic units have 
multipliers in their structure. However, the multiplication 
is complicated and difficult in VLSI implementation [2,3]. 
Multiplication is done into two stages fundamentally. 
One is the production of the partial result, and another is 
summation of produced partial results to be added to the 
final addition. Best way to increasing the performance 
of multiplier is to decrease the number of partial results 
while decreasing its production time. Because a decreased 
structure has delay problem related with the production 
of the partial result, the delay time in a processor without 
multiplier is compared with the delay time of a multiplier 
and then an architecture is chosen [4,5]. Multipliers use 
adders in their structure. Designing high-speed adders 
have important role in multiplier performance. Adders 
are basic units that are chained in Dadda structure.
Real time system for speech, video, and other such 
applications is expected due to the increasing use 
of mobile systems, e.g., cellular phone, and laptop 
computers. Most new used IC implementations for the 

multimedia system are RISC architectures and DSP 
structures. Higher-bit processor has been broadly used 
in computer architecture, however could not gratify 
new application areas like real-time graphic and/or web 
requests. In addition, traditional 16-bit or 32-bit DSP 
has been used for signal processing merely, which isn’t 
appropriate for image processing and cannot implement 
in real-time due to large amounts of data needed for 
image and multimedia process. So, high speed multiplier 
for the multimedia DSP structure or RISC system must 
be used. The multiplier should be implemented to present 
both fast multiplication and less hardware. High Radix 
Booth’s algorithm for the multiplier is usually used and 
XOR circuits, adder, Booth encoder, MUX and fast final 
adder are used for high speed and low power circuit in 
this project [5,6]. 

MODIFIED BOOTH ENCODER

In this section a new Booth encoder is presented. 
Initially, we briefly review the previous modified 
Booth algorithm that has been conventionally used [2]. 
It is designed on the encoding the two’s complement 
multiplier to facilitate decrease the number of partial 
results to be summed [3]. This results to high-speed 
multiplier and with a reduction of hardware layout. The 
modified Booth algorithms using high radix is made 
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of the slicing of the multiplier into partly cover sets of 
3-bits, as three-bit encoding, and each set is encoded to 
produce the correct partial result. The multiplier, Y, in the 
two’s complements form can be expressed as:

It can be rewrite using three bit structure and produced 
signals are:

Calculating Y, using the modified Booth algorithm, 
produces five digits. It can be calculated using above 
equation, the expressions in brackets have values -2, -1, 
0, 1 and 2. Each digit in the multiplier does a definite 
operation on the multiplicand, X, as illustrated in Fig. 
1. The multiplication of two numbers produces only 4 
partial results. The partial result in this case is presented 
on three groups. For the addition of a correct partial 
result, the signs are expanded, as shown in Fig. 1. So, a 
new modified Booth algorithm is presented that reduces 
number of partial products efficiently.

MULTIPLIER STRUCTRE

In this section, a new 4-2 counter is presented. The 
multiplication operation for two binary numbers, using 
2’s-complement representation and high-radix Booth 
algorithm is done. High radix encoding of the multiplier 
means a decreasing in the number of digits

Then, the partial results multiplexer must select one out 
of choices relating on the value of the following digit. 
In this step, the partial result is two bits wider than the 
multiplicand, resulting 24-bit partial results. The most 
appropriate structure for the reduction of 8 partial results 
uses only 4-2 counters [5] (instead of the conventional 
3-2 counters) which is presented in Fig. 2. The eight to 
two counter uses 3-2 and 4-2 counters. It has 6 logic gates 
delay. The final addition must be done in a fast method, so 
they are designed with carry and sum propagate adders. 
Proposed multiplier design has important effect in final 
results.

Fig. 1.Presented Booth encoding and multiplier structure
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 Fig. 2.Proposed 4-2 Counter implemented in 70 nm

PARTIAL PRODUCT REDUCTION

In this section, a modified Dadda tree is presented. 
Dadda structure makes possible to have an architecture, 
which does the addition step in parallel, thus resulting in 
high speed. Adders include a delay proportional to the 
logarithm of the operand size n, which is smaller than 
the array structures [4]. On the other hand, the problem 
of Dadda tree is its complicated and irregular structure in 
compare with array architectures. In Fig. 3, an example 
of multiplication using Dadda tree partial result reduction 
algorithm is presented. It is important that parallelizing 
two adder operations result in a smaller partial result 
addition after only one stage [3]. A three view of the 
8 input 4-2 tree has been presented. In generating 4-2 
multiplier, each tree part forms a single bit slice of the 
array. The regularity of 4-2 trees over 3-2 trees, therefore, 
results to more performance. One cause is that regular 
structures have expected capacity. Proposed multiplier 
layout is showed in Fig. 4.

The first idea behind the selection of the structure is 
the comparison between area, speed and power. An ideal 
design should use fewer layouts but still perform high-
speed operation. From the argument of the multiplier 
structure, the smallest design of the multiplier is array 
multiplier, although, it is also the slowest structure. The 
second idea behind the selection of the structure is the 
regularity, which means the implementation can be par-
titioned into several equal components. By connecting 
these components, a new circuit can be easily made. The 
implementation time is considerably decreased in this 
method. Large requests are performed of regular archi-
tectures to modification of the implementation process. 
Regularity results a modification in design by generat-
ing specific implementations in a number of locations, 
thereby decreasing the number of different implementa-
tions that require to be designed. Array multipliers with 
Booth encoding are more regular than other structures. A 
parallel array multiplier has many advantages. It has the 

benefits of conventional array multipliers such as regular 
design and minimum layout. By entering one or two par-
allel steps into the multiplier, the speed can be increased. 
The speed problem of the array multiplier is solved in this 
method. Logic implementation is vital in the structure of 
the multiplier. First, to warranty the multiplier to oper-
ate at the high speed, the delay of the crucial path must 
be computed and the needed time of entering a parallel 
step should be calculated. Second, to decrease the layout 
of the multiplier, different structures of adders are devel-
oped. Logic synthesis is required to experiment speed and 
efficiency of the adders. The structure of the adder has to 
be designed first. Then the number of the parallel steps 
can be determined by the performance of the adder. The 
dimension of the multiplier should be as short width as 
possible if all the needs can be obtained. Final result are 
calculated using 

As discussed before, the usual method in all of the 
partial result summation algorithms is to decrease the 
m partial results to two final operands. A carry hybrid is 
then designed to sum these two operands. One of the first 
summation designs was the Wallace algorithm, where 
counters are used to decrease 4 bits of each column to 
2 bits. For 16*16 multiplications using 2*2 multiplier 
productions, height is 9 and five steps of counters needed. 
Dadda used the expression “counter”. Counter is a logic 
network with n outputs and m inputs. The n outputs show 
a binary amount of one’s entered at the inputs. The adder 
in the previous Wallace tree presented in [4] is a three to 
two counter. 

The Wallace algorithm can be merged with shift and 
add methods to implement high performance designs. A 
fundamental need for such design is an appropriate flip flop 
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  Fig. 3..A slice of proposed partial product reduction scheme

Fig. 4..Proposed multiplier layout
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to save middle products. In this sentence “appropriate” 
means that it does not use extra delay to the calculation. 
The proposed flip flop, perform this by connect a path 
from the output of a circuit to an input. Therefore, path 
delay is not raised. In a given design, existing “and-or” 
logic is substituted by the flip flop which also does the 
“and-or” procedure. Use of this flip-flop can considerably 
decrease design overheads if suitable care is taken in 
implementation. Assume the multiplication of an m-bit 
multiplier on an n-bit multiplicand; that is, we decrease 
m partial results, each of n bits, to two final results, and 
then chain the carries to obtain final result.

In the implementation of a summation tree, two 
things are necessary to be solved. First, which kind of 
counter structure is to be used and second, how these 
designs should be used to obtain less delay. A counter 
structure adds the number of ones on its inputs and sums 
that number at the outputs. The simplest counter is full-
adder module, but more complex and efficient counters 
have been proposed [6]. To achieve the overall short 
delay, the final adder has to be with awareness designed 
to the delay computed of the main outputs from the partial 
result summation tree. Designed algorithms suitable for 
the final adder are described by [5]. In this study, it is 
limited the choice of addition structures to half adders, 
full adders and high speed counters. [4] and [6] have both 
computed the minimum number of counter circuits, in 
a summation tree, using different counters. This lower 
bound in fact matches to the hardware performance in 
e.g., Dadda, Wallace, and array multiplier methods. The 
counters can be designed in many methods as triangular 
assignment, or rectangular assignment. The distance 
between the modules in the triangular form is taken to be 
a minimum layout. A triangular form is analyzed, which 
makes the most appropriate performance. A triangular 
form is suitable for some multiplier methods, but this will 
be insignificant for the conclusion of this paper. A large 
area wasted will remain regardless of form of structures.

The two important tree multipliers are those proposed 
by Wallace and Dadda. Wallace proofed that the delay for 
an M*M multiplier can be decreased to log M, making 
more speed than the array multiplier. In Wallace’s 
algorithm, a high performance adder (M adders without 
carry propagate) is designed to add three rows into a 
two row product with only one conventional full adder 
delay. The function is done continuously to produce two 
operands of partial results from M operands of partial 
results for an M*M multiplier. These two rows are then 
merged using a fast carry chain adder. Dadda developed 
and expanded Wallace’s conclusions by nothing that 
a counter can be thought of as a circuit which adds the 
number of bits in the input, and then outputs that number 

in binary structure. Using such an adder, Dadda assumed 
that, at each step, only minimum number of summation 
should be performed so as to decrease the partial results 
by a factor of 0.5. In the Wallace algorithm, the partial 
results are decreased very fast. In comparison, Dadda’s 
algorithm does the minimum summation needed at each 
step to do the summation in the same amount of steps 
as needed by the Wallace algorithm concluding in an 
implementation with less counters.

CARRY RIPPLE ADDER

In this section, a new final adder is proposed. A critical 
part of multiplier is the final addition adder. Because 
a random number of bits of the middle result could be 
transferred into the lower half, this adder must be capable 
to hold changeable bit-width operands. In addition, some 
of the least significant bits of the middle result have 
previously been decided; therefore, no addition should 
be done at these bit locations. A bit, from lower stage is 
used to decide which slice of the shifted middle result 
is going to be determined. This bit is consequent from 
the output of the priority bit, therefore other bits, which 
relate to the omitted bits of the multiplier; generate a 1, 
while other bits are 0. The resulting bits have as many 
one’s as the number of bits that are transmitted and, 
thus, as the number of bits that would be summed. It 
is a carry-chain adder, where a carry-in can be used at 
any bit location and one of operands can be include the 
carry slice of the middle result neg or zero. Table I shows 
comparison between different 54*54 bit multipliers. A 
part of multiplier (8*8-bit) is simulated using HSPISE 
which is shown in Fig. 5. Proposed final adder improves 
final addition step of multiplier.
The carry-in of module  is calculated by the 
carry-out of . The carry-chain adder is layout 
efficient and appropriate to implement, but is slow since 
the whole latency is related to the amount of bits of the 
operands. Carry lookahead adders have more speed than 
carry-chain architectures, because the carry propagate 
is sliced at the block edges. The worst case latency of 
the carry lookahead adder is depended to the maximum 
module length  
and to the amount m of modules. 
The optimal module slice of lookahead adders is quite 
complex. If the counter is created by many small 
modules then the latency through the carry-lookahead 
networks may considerably reduce speed the calculation. 
However, if few large modules are used then the 
component latency limits the whole efficiency. Several 
designs have been presented [6], to facilitate the best 
trade-off between these structures, presenting that a non 
homogeneous module size can be used to decrease the 
latency. An extra latency optimization with regard to the 
structure of Fig. 2 can be obtained by using a two-step 
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Table 1. Comparison between 54×54 bit multipliers

Fig. 5. Multiplier simulation results using HSPICE a) input operands (voltage) b) multiplication output (voltage) c) multiplication 
output (current)

carry lookahead adder. In this case the counter is sliced 
in several stages. Each slice is themselves combined by 
modules of bits (see Fig. 1, which presents the way of a 
slice combined by two modules). The modules have the 
equal architecture of Fig. 3.
The presented counter uses domino CMOS encoded 
carry bits produced by two adders. Therefore the ith 
carry  is showed by two bits. We describe the rise 
time  as the delay from the time when the output bit 
become available to the last inverted bit. (i.e. =rise 

time for signal which is generated should be positive (
>0)). This issue is called the rise time signal latency. In 

latency-sensitive components, such an issue is analyzed. 
However, because delay-sensitive structures suppose that 
latencies of components and layouts are limited, the rise 
time ( >0) must be synthesized. Rise time logic results 
latency and layout overhead. The larger this component 
is, the higher the layout overhead and the larger the rise 
time  will be. High-performance multiplier circuitry 
should be high-speed, simple with small layout overhead, 
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and small . A latency-sensitive multiplier structure 
has large layout overhead and rise time even for small 
counters. The counter presented here uses a much more 
high-performance logic circuit which provides a limited 
latency model. While latency-sensitive circuit analyses 
calculation completion of all blocks carry nodes, we try to 
only analyze the completion of calculation of the blocks 
middle carry structures and  and use that 
to single completion of calculation for the full three-bit 
counter block. With  used to verify output of carry 
calculation of the three-bit counter block, a problem may 
occur when  has either a carry propagate or a carry 
free condition while . In this 
form  may be calculated faster than other signals in 
the same counter block, with the slowest signal being 

 which may be use two transmission-gates latency after 
.

CONCLUSIONS

Proposed algorithm has done three modifications in 
conventional multiplier architectures. Multiplier design 
has three important steps, which include partial product 
generation step, partial product reduction step and final 
addition step. In the first step of algorithm, a new modified 
Booth structure is presented. This algorithm halves 
number of partial results which results smaller tree in the 
second step of multiplier. In partial result reduction step, 
a new algorithm to sum partial results is presented. This 
algorithm sums partial results very fast and it has regular 
structure. In the final addition step, a new changeable 
length adder is proposed which sums two final operands 
in a new way which, increases speed. Simulations are 
done using HSPICE and C codes. Presented 54*54-
bit multiplier delay is 3.4 ns, transistor count is 24213 
and power dissipation is 0.54 mWatt in 70 nm CMOS 
technology. Proposed multiplier implementation 
decreases number of transistor count about 8.5 percent. 
Delay reduction is 10 percent. Power dissipation is 
decreased 11 percent in compare with other algorithms 
[3,6].
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