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Abstract 
The convergence behavior of the Least Squares Constant Modulus Algorithm in an adaptive beam forming application is 

examined. It is assumed that the desired signal and the interfer¬ence are uncorrelated. The improvement in output SIR with 
each iteration of the algorithm is predicted for several different signal environments. Deterministic results are presented for an 
environment containing two complex sinusoids. Probabilistic results are presented for a constant modulus desired signal with a 
constant modulus interferer and with a Gaussian interferer. The asymptotic improvement in output SIR as the output SIR becomes 
high is also derived. The results of Monte Carlo simulations using sinusoidal, FM, and QPSK signals are included to support the 
derivations.
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INTRODUCTION
We will study a member of the class of 

adaptive algorithms generally known as Godard or 
Constant Modulus Algorithms (CMA) [1,2]. These 
algorithms can be used for adaptive beam forming, 
equalization, and other applications when the 
desired signal has a constant envelope. Examples of 
such signals include FM, PSK, and FSK. The CMA 
can also be applied to many non-CM signals (e.g., 
pulse-shaped PSK, QAM) although the performance 
may be degraded relative to the case where the 
desired signal is CM [3,4]. The main advantage of 
CMA is that it is a ‘blind’ adaptive algorithm, i.e., 
it does not require a training signal. Other blind 
adaptive algorithms have been designed to exploit 
cyclostationarity  [5,6,7], known signal constellation 
[8], known spreading code in CDMA [9], and time or 
frequency gated properties [10,11,12].The first CMA 
to be proposed was based on a Stochastic Gradient 
Descent (SGD) form [2]. The main drawback of this 
method is its slow convergence. A faster converging 
CMA similar in form to the Recursive Least Squares 
method is the orthogonal zed CMA [13]. Another 
fast converging CMA is the Least Squares CMA 
(LSCMA)[14,6], which is a block-update iterative 
algorithm. It is guaranteed to be stable and is easily 
implemented.  Despite the generally accepted 
use of the LSCMA, few analytical results on its 
convergence have appeared in the open literature. 

The performance of the algorithm has instead been 
demonstrated through Monte Carlo simulation. The 
lack of analytical results is due to the difficulty 
of analyzing the non-linear CMA cost function. 
Existing work on the convergence behavior of CMA 
mostly deals with finding minima of the CMA cost 
function and finding undesirable stable equilibrium  
in equalization applications (e.g., see [15,16] and 
references therein). A notable exception is the work 
by Treichler and Larimore on convergence of SGD 
CMA in an environment containing two complex 
sinusoids [10]. Their work predicts the output power 
of each sinusoid in a temporal filtering application. 
The Analytic CMA (ACMA) algorithm presented 
by van der Veen in [14] should also be noted. This 
algorithm solves directly for a set of beam former 
weight vectors that spatially separate a set of CM 
signals. The ACMA, although effective in many 
situations, is fairly complex and its behavior with 
closely spaced and/or low SNR signals is not clear. 
For these reasons it is recommended in [14] that the 
ACMA be used to initialize the LSCMA, and that 
several iterations of the LSCMA be used to find the 
optimal solutions for the weight vectors. In this paper 
we determine the convergence rate of the LSCMA in 
some simple environments, including: (i) high output 
SIR; (ii) sinusoidal desired signal and sinusoidal 
interferer; (iii) CM desired signal and CM interferer; 
(iiii) CM desired signal and Gaussian interferer. We 
assume that the interference is uncorrelated with the 
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desired signal. The convergence rate is expressed 
in terms of the SIR improvement achieved with 
one iteration of the LSCMA. We first examine the 
situation where the LSCMA output SIR is high We 
show that if the interference is perfectly removable, 
each LSCMA iteration will increase the output SIR 
by approximately 6 dB. This result is valid for any 
CM desired signal (arbitrary angle modulation), and 
any uncorrelated interference. We next examine an 
environment containing two complex sinusoids, and 
show that the LSCMA output SIR can be predicted 
for each iteration. The results are analogous to those 
presented in [10]. An environment containing two 
CM signals, each having random phase, is then 
considered. It is shown that the average behavior 
of the LSCMA in this environment is similar to 
the deterministic behavior in the two-sinusoid 
environment. Finally, an environment containing 
a CM desired signal and Gaussian interference is 
examined. 

Overview of LSCMA System
The objective of the adaptive beam former is to 

obtain a high-quality estimate of a desired signal 
in the presence of co channel interference using 
an array of antennas. Letting the M x 1 vector x( n) 
represent the signals and noise received at an array 
of M antennas at discrete time index n gives
X(n)=                           (1)
where the M x 1 vector a, is the spatial signature 
corresponding to signal s(n) and the M x 1 vector 
q(n) contains environmental and receiver noise. 
The model defined by Eq.(1) is often referred to 
as the narrowband model, since it is assumed that 
the signals are narrowband relative to the carrier 
frequency. The signals are also assumed to have 
unit variance and to be temporally uncorrelated with 
each other and with the background noise. That is

n) n)}=                             (2)
where  { . } denotes expectation. The signal power 
is incorporated in the spatial signature, which 
describes the amplitude and phase difference 
between the signal received at a reference antenna 
and all other antennas. In the absence of multi path, 
the spatial signature is generally referred to as an 
array response vector. The array response vector 
is dependent on the angle of arrival (AOA) of 
the signal, the array geometry, the gain pattern of 
each antenna, the carrier frequency of the incident 
signals, etc. When a signal is incident from more 
than one direction the spatial signature will be a 
linear combination of the array response vectors 
corresponding to the AOA of each path. This 
assumes that the multipath delay spread T is small 
relative to 1/ B, where B is the signal bandwidth. 
If T > 1/ B, each multipath component received 

by the array is uncorrelated with other arriving 
components, and each component is treated as a 
different signal. The case in which the delay spread 
is significant, but not so large that the multipath 
arrivals are uncorrelated, is not treated in this paper.  
An adaptive beamformer weights and sums the 
signals received by the array to form an estimate 
y(n) = x(n) of the desired signal, where w is the       
M x 1 complex vector of beam former weights and 
wH is, as usual, the Hermitian transpose. The desired 
behavior of adaptive beam forming is most easily 
visualized for environments that lack multi path. In 
these environments an adaptive beam former seeks 
to steer a beam towards the AOA of the desired 
signal while simultaneously steering nulls towards 
the AOA’s of the interfering signals. Computation 
of the optimal (maximum output SNR, minimum 
MSE, etc.) weight vector requires either a training 
signal or precise knowledge of the desired signal 
spatial signature. In practice, a training signal is not 
always available. Furthermore the spatial signature 
may be impractical to obtain. In such situations the 
CMA may be used to obtain a nearly optimal weight 
vector if the desired signal has constant modulus. 
The constant modulus property can in general be 
exploited by minimizing the non-linear cost function

                        (3)

where < . > denotes time average. The form of 
Eq.(3) generally makes analysis of CMA difficult. 
The LSCMA is a block update iterative technique 
for minimizing the  cost function given by:

                        (4)    
The LSCMA is implemented as follows. At the kth 
iteration, N temporal samples of the beam former 
output are generated using the current weight vector

. This gives:
                                   (5)

The initial weight vector  can be taken as = 
if no a-priori information is available. Other 

initialization methods are considered in [11], where it is 
shown that the dominant eigenvectors of the observed 
data covariance matrix are good choices for initial weight 
vectors. The kth signal estimate is then hard limited to 
yield

(n)=                                                (6)

and a new weight vector is formed according to
                                       (7)

Where                                       (8)

And                                            (9)

In the above expressions,  denotes a time 
average over 0  N - 1. The updated weight 
vector  minimizes the mean square error
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              (10)

The iteration described by Eq.(5), Eq.(6), and Eq.(7) 
is continued until either the change in the weight 
vector is smaller than some threshold, or until the 
envelope variance of the output signal is deemed 
sufficiently small. In a stationary environment, the 
LSCMA iteration can be performed using a new 
block of data, or can be re-applied to the same 
block of observed data. The former approach is 
referred to as dynamic LSCMA in [13], while the 
latter approach is referred to as static LSCMA. The 
only parameter which must be selected when using 
the LSCMA is the block size N. Selection of N will 
depend on many factors, including the acceptable 
latency of the update procedure, the rate at which the 
signal environment is changing, and the available 
processing power. Also, the number of temporal 
samples of array data must be equal to or greater 
than the number of antennas so that the linear system 
of equations is over determined. The LSCMA block 
size is similar to the SGD adaptation step parameter 
in that smaller block sizes yield faster convergence 
at the cost of higher variance in the output SNR. By 
faster convergence we mean that fewer temporal 
samples of data need be processed to achieve steady-
state. An interesting feature of the LSCMA is that the 
output SIR as a function of the number of iterations 
is nearly independent of data block size. That is, the 
LSCMA typically converges in 5 to 10 iterations 
regardless of the block size.An aside is in order here 
on the computational complexity of the LSCMA. 
Direct minimization of MSE by solving a set of 
simultaneous linear equations, as in Eq.(7), is often 
considered impractical for real-time applications 
because of the computational load. Certainly this 
may be true for adaptive equalization applications, 
where the number of filter coefficients can be large. 
However, the computational load is more reasonable 
for beam forming applications since adaptation of a 
relatively small number of coefficients is required. 
The LSCMA bears a strong resemblance to the 
classical least squares method that can be used when 
a known training signal is available. The LSCMA 
can be interpreted as a least squares method that 
uses a pseudo-training signal that is derived from 
the observed data. This is the viewpoint taken here. 
We essentially determine the quality of the pseudo-
training signal in some representative situations. A 
different motivation for the LSCMA is presented 
next, along with a discussion of the relationship 
of the LSCMA to other existing algorithms. The 
LSCMA can be viewed as a method where a signal 
estimate is alternately projected onto the set of CM 
signals and the space spanned by the observed data. 
In this way the LSCMA resembles the Gerchberg-

Saxton algorithm (GSA) [12], as noted by Wang, et 
al. [5] and Van der Veen [14]. The problem solved 
by GSA is to recover the magnitude and phase of 
a signal when only the magnitude of the signal and 
the magnitude of its Fourier transform are known. 
This problem arises in many applications, including 
speech and image processing (see,[15]). The GSA 
projects a signal estimate in an alternating fashion 
onto time domain and frequency domain property 
sets. The principal similarity of GSA and LSCMA is 
that both employ a projection onto a non-convex set. 
This is in contrast to Projections Onto Convex Sets 
(POCS) [1,6,7,9]. POCS can be used to find a signal 
estimate which satisfies multiple properties. The 
POCS takes an initial signal estimate and projects 
it in an alternating fashion onto the various property 
sets being exploited. The POCS is guaranteed to 
converge when the sets are closed and convex. The 
GSA and the LSCMA can be viewed as belonging 
to a class of algorithms that are sometimes known as 
the Method of Generalized Projections (MGP). The 
GSA is the archetype of MGP, and some authors use 
‘Gerchberg-Saxton’ as a generic term to describe 
any MGP. MGP convergence cannot be assured 
in general, although in some cases MGP exhibits 
the ‘error reduction’ property. This implies that 
each iteration of a MGP reduces, or at worst does 
not increase, the cost function being minimized. 
The error reduction property of the LSCMA is 
described in the original LSCMA paper [13], but the 
relationship of the LSCMA to the GSA and other 
MGP approaches was not recognized.

Analysis Frameworks
In this section we describe the general framework 

used to analyze the LSCMA. A key assumption is 
that the interference is uncorrelated with the desired 
signal. We essentially describe a simple way to 
measure the quality of the pseudo-training signal, 
d(n). If no background noise is present, the quality of 
the beamformer output y( n) will be identical to the 
quality of d(n). When background noise is present, the 
quality of y(n) is dependent on the quality of d( n) and 
the optimal output SINR. The optimal output SINR 
is in turn dependent on many factors, including the 
array geometry, the number of antennas, the number 
of incident signals, and the angle of arrival of each 
signal. The beamformer output signal at the kth 
iteration can be expressed, to within a multiplica
tive constant, as 

                 (11)

where s( n) is the constant modulus desired signal, 
z( n) is noise and interference, and the SINR of 
the beamformer output is controlled by g. Both 
the desired signal s(n) and the interference z( n) 
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have unit variance. The hard-limiter output dk( n) 
will contain three components: (i) one component 
which is correlated with the desired signal; (ii) one 
component which is correlated with the interference; 
and (iii), one component which is correlated with 
neither the signal nor the interference. This last 
component is the result of intermodulation. between 
the signal and the interference. We can express the 
hard-limiter output as

(n)= =                    (12)
Where the scalars  and  control the desired signal 
power and the interference power, respectively, and 

  contains the intermodulation terms. We will 
now examine the relationship between the SINR in 
dk (n) and the SINR in the updated beam former output 

. We initially assume that no background noise 
is present, and that the array has sufficient degrees 
of freedom to completely remove the interference. 
Given these assumptions, the optimal beam former 
output SINR is infinite. These assumptions are 
clearly not realistic, but this helps provide insight 
into the behavior of the LSCMA. As the block size 
N , the updated weight vector minimizes the 
MSE between (n) and 

=
                                                                       (13)

We can express the updated beamformer output as 
                  (14)

Which, together with Eq.(12), allows the MSE to 
be written as

=
                             (15)                       

=                            
(16)
                   where we have made use of the 
fact that s(n), z(n), and  (n) are mutually uncorrelated. 
Clearly the MSE is minimized for  = ,  =

. This implies that the signal component in 
the updated beamformer output will match the 
magnitude and phase of the signal component in 
the hard-limiter output. Thus the MSE between

 and the updated beamformer output  
is minimized when

           (17)           

In order to find  and , we calculate the cross-
correlation of s(n) and z(n), respectively, with d(n). 
Note that 

                                          (18)
=              (19)

=                                                               (20)
Similarly we have

                        (21)
The SINR  in the hard-limiter output dk is

                             (22)
                   

since we model s( n) and z( n) as having unit variance. 
Thus, the output SIR of the updated LSCMA weight 
vector can be determined from Rsd and Rzd. This 
requires that the probability density function (PDF) 
of the signal and the interference be known. To 
further illustrate the concepts behind this analysis 
framework, we will apply the LSCMA to a simple 
environment containing two uncorrelated complex 
sinusoids. The array configuration consists of two 
antennas, with the interelement spacing equal 
to , where  is the carrier wavelength. One 
sinusoid, with a frequency of 5/1024, is incident 
from broadside to the array, which we define as 0°. 
This sinusoid is treated as the desired signal. The 
second sinusoid, with a frequency of 31/1024, is 
incident from 30°. This sinusoid is treated as the 
interfering signal. The amplitude of the first sinusoid 
is unity, and the amplitude of the second sinusoid is 
0.9. The LSCMA is applied to this environment with the 
initial weight vector Wo = [ 1 0]. Thus the initial SIR is 
approximately -0.9 dB. The LSCMA block size N is set to 
1024 samples. The period gram of the initial beamformer 
output (n) is shown in Figure 1. The next step in 
the LSCMA is to hard-limit the beamformer output. 
The period gram of the hard-limited beamformer 
output is shown in Figure 2. Note that the original 
sinusoidal frequencies are still present, along with 
intermodulation products. Also note that the relative 
amplitude of the desired sinusoid is now slightly 
higher relative to the interfering sinusoid. The exact 
change in relative amplitude is calculated later in 
Subsection III. The next step in the LSCMA is to 
update the weight vector using the hard-limiter 
output in the same manner as a training signal. Figure 
3 shows the period gram of the updated beamformer 
output. As discussed earlier, the amplitude of each 
sinusoid in the updated beamformer output matches 

Figure 1: Periodogram of the initial beamformer output 
for the simple two-sinusoid environment. The initial SIR 
of 0.9 dB is indicated by the dotted horizontal lines.
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Figure2: Periodogram of the hard-limited beamformer 
output for the simple two-sinusoid environment. The SIR 
of 3.09 dB is indicated by the dotted horizontal line. 

the amplitude of the corresponding sinusoids in the 
hard-limiter output. The intermodulation products 
are orthogonal to the signals present in the array 
data, and so have no effect on the weight update. It 
can be seen that the SIR in the updated beamformer 
output is approximately 3 dB higher than the initial 
SIR.
Note that the calculation of SIR does not take 
into account the intermodulation terms. When 
background noise is present the interference and 
noise cannot be completely removed by beam 
forming. Independent thermal noise generated by 
each of the M receivers required for the M antennas 
in the array is a common source of background noise. 

Figure 3: Periodogram of the updated beamformer output 
for the simple two-sinusoid environment. The SIR of 3.09 
dB is identical to the SIR in the hard-limiter outputs.

The relationship between the SINR in and the 
updated LSCMA output SINR is then somewhat 
more complicated. We now derive an expression 
for the output SINR of the updated LSCMA weight 
vector when background noise is present. This will 
be shown to be dependent only on the optimal output 

SINR, the initial SINR, and the SINR gain provided 
by the hard limit non-linearity. The observed data 
is modeled as When background noise is present 
the interference and noise cannot be completely 
removed by beam forming. Independent thermal 
noise generated by each of the M receivers required 
for the M antennas in the array is a common source 
of background noise. The relationship between the 
SINR in and the updated LSCMA output SINR 
is then somewhat more complicated.We now derive 
an expression for the output SINR of the updated 
LSCMA weight vector when background noise is 
present. This will be shown to be dependent only on 
the optimal output SINR, the initial SINR, and the 
SINR gain provided by the hard limit non-linearity. 
The observed data is modeled as

                               (23)
Where a is the spatial signature of the desired signal 
and q( n) contains the noise and interference. We 
assume that Rqq is equal to the identity matrix. There 
is no loss of generality since whitening the data has 
no effect on the LSCMA. The cross-correlation 
vector Rxd is given by

Rxd                                         (24) 

where  is the initial weight vector, and c is the 
square root of the SINR gain, with Eq.25 The 
covariance matrix of the data is

c                                        (25)
                                 (26)

By the matrix inversion lemma
                                   (27)

where p is the optimal output SINR . The updated 
weight vector is

                                                (28)
          = ( )( )                  (29)
          = ( )                                  (30)

The output SINR of the updated weight vector is 
                                                  (31)

=         (32)

Since the initial SINR is
                                           (33)

the output SINR of the updated LSCMA weight 
vector can be written

                         (34) 

We argued earlier that the output SINR of the 
updated LSCMA beamformer is equal to the SINR 
in the hard limited signal dk ( n) if no background 
noise is present. It is straightforward to show that 

                    (35)
Which supports the argument made earlier. Also 
note that when c operation provides no gain, and 
Here the output SINR of the updated weight vector 
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equals the initial output SINR, as expected.
                               (36)

 In order for LSCMA to converge, the hard-limiter 
must emphasize the desired signal relative to the 
noise and interference. The effect of hard-limiting 
and other non-linear operations on communication 
signals and noise has been a topic of study since the 
1950’s, e.g., see [17,18] and references therein. A 
central motivation for this work is to understand the 
effect of non-linear amplifiers on communication 
signals, which are commonly used in satellite 
transponders. Non-linear processing has also been 
studied as a possible means for reducing the effects 
of noise and interference, [19,20]. These studies 
have clearly shown that hard-limiting and filtering 
a constant envelope signal will increase the SNR, 
even when the intermodulation components are 
considered. In fact, for a constant envelope signal, 
the hard-limiter becomes the optimal nonlinearity as 
the SNR tends to infinity [21].

A.   High SIR
We first examine the situation where the 

beamformer output SIR is high, as might be the case 
near LSCMA convergence. We model y( n) As

          (37)

where is the phase of the desired signal s(n), 
and m(n) and  are the magnitude and phase, 
respectively, of the unit-variance interference term, 
z(n). The scalar 9 controls the SIR, and we assume 
g  Note that we have assumed for convenience 
that the desired signal has unit amplitude in the 
beamformer output. This has no effect on the 
behavior of the LSCMA, since any scaling of y(n) is 
removed by hard-limiting The cross-correlation of s( 
n) and d( n) is 

                    (38) 
Using the binomial approximation 

    
                                                   (39)

where   Before proceeding 
further we consider the PDF of  We are 
concerned here with the PDF of the phase difference of 
two independent complex baseband signals for the 
case in which the PDF of the phase of each signal 
is uniform over ( ]. The desired PDF is obtained 
by convolving two uniform PDFs, which results in a 
triangular-shaped PDF over ( ]. Since the phase 
wraps (ejΔ = ) the PDF of  is uniform over (
]. This is true even if the received signals have the same 
modulation format and identical carrier frequencies. 
The cross-correlation of s( n) and d( n) can now be 
approximated as

                                                                                 (40)
where the magnitude of the interfering signal 
m( n) and the phase difference ~(n) are assumed 
independent. The result that Rsd 1 is intuitively 
appealing since the SIR is high.
The cross-correlation of z( n) and d( n) is

                                                                           (41)

The output SIR (22) now becomes
                                                (42)

Since the input SIR is 1/ g2, the ratio of the output 
SIR to the input SIR is 4, so that the SIR increases 
by 6 dB. This result for high SIR holds for any 
CM signal with uncorrelated cochannel noise and 
interference and will be observed in the simulation 
results to follows.

Two Complex Sinusoid Environment
We now examine the behavior of the LSCMA 

in an environment where the antenna array receives 
two orthogonal complex sinusoids in the absence 
of background noise. We show that if the SIR 
at iteration k is known, the LSCMA output SIR 
can be predicted exactly for all later iterations. 
We also show that these results are a very good 
approximation with sinusoids having arbitrary, but 
well separated, frequencies. The results presented 
here are deterministic. Other results presented later 
examine the mean behavior of the LSCMA using 
a probabilistic framework. The beamformer output 
signal obtained with the existing LSCMA weight 
vector is modeled as 

        (43)
where  = 2 /N for integer ki. The parameter  
determines the relative power of the sinusoids. In 
Eq.(43),
 s( n) and z( n) represent the desired signal and the 
interferer, respectively. The amplitude of the desired 
signal in y( n) is assumed to be unity, which has no 
effect on the behavior of the LSCMA. Temporal 
cross-correlation of the desired signal, s( n), and the 
hard-limiter output signal, d(n), is

=                  (44)
Where . We note that since y is periodic, 
1/  is also periodic and may therefore be expressed 
as a Fourier series. The period of 1/ is 2 / . The 
function is real and even, so the Fourier series is 
given by 

                         (45)
Where
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The Fourier coefficients given by (46) are 
independent of , which implies that the results to 
follow hold true for any frequencies  and
, if these frequencies lead to orthogonal sinusoids. 
Substituting (45) into (44) yields

       (47)
   =
=                                                           (48)
The Fourier coefficients  and  may be found using 
numerical integration. Using a similar approach for 

 yields The output SIR of the hard-limiter is
                       (49)

                                  (50)
and the SIR gain is Figure4 shows the SIR gain (50) 
as a function of input SIR . Note that the SIR gain 
tends asymptotically to 6 dB as predicted by the high 
SIR analysis. The results presented in Figure .4 are 
now used to predict the output SIR of the LSCMA 
in an environment containing a sinusoidal desired 
signal and a sinusoidal interferer. A two element 
beamformer is simulated with the inter-element 
spacing equal to one-half the carrier wavelength, A. 
The desired signal is incident from broadside with 
an amplitude of one, and the interferer is incident 
from 30° off broadside with an amplitude of 0.9. The 
initial LSCMA weight vector is set to , so that the 
initial SIR +0.9 dB. The block size is 1024 samples, 
with = 5/1024 and  = 31/1024. Table 1 compares the 
predicted and 
measured output SIR at several iterations of the 
algorithm, which shows excellent agreement with 
theory. These same results are presented in an 
alternative manner in Figure5. This figure shows 
the amplitude of each sinusoid as a function of 
the number of LSCMA iterations. A similar figure, 
showing the behavior of the SGD CMA in an 
environment with two sinusoids, appears in [10].
We now briefly consider the case in which the two 
complex sinusoids are not orthogonal. The cross-
correlation between the two sinusoids will be small if 
the two sinusoids are well separated in frequency. For 
this case we would expect the preceding analysis to be 
a good approximation to the observed behavior. This is 
supported by the results shown in Table 2. The simulation 
parameters are the same as in Table 1, except that = 
0.5/1024 and  = 3/1024. The agreement with theory 
is still very good even though the sinusoids are not 
orthogonal.

C.   CM Signal with CM Interference
We now consider an environment where the 

antenna array receives a CM desired signal and a 
CM interferer in the absence of background noise. 

Figure 4: Improvement in SIR achieved by one iteration 
of LSCMA with sinusoidal desired signal and sinusoidal 
interferer.

Unlike the deterministic framework employed 
in the sinusoidal environment, we now rely on a 
probabilistic framework. These results therefore 
describe the mean behavior of the LSCMA. The 
initial beamformer output signal y( n) is modeled as

                     (51)

Figure5: Amplitude of both complex sinusoids in the 
beamformer output as a function of the number of LSCMA 
iterations. Solid line indicates predicted amplitude, ‘+’ 
indicates amplitude measured in simulation.

Table 1: Comparison of predicted and measured LSCMA 
output SIR in an environment containing two complex 
sinusoids.
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where ( n) and ( n) denote the phase of the desired 
signal and interfering signal, respectively, and 9 
determines the relative power. 
We assume that ( n)  and ( n) are independent 
random variables uniformly distributed over 

, ]. The cross-correlation of the desired signal s(n) 
and the hard-limiter output signal d(n) is,

                         (52)

where ( n) - ( n)   
. We simplify the expression for 

 by noting that  = cos  + j sin , and odd 
functions when integrated over -  to  yield zero. We 
thus obtain

                       (53)
Similarly, the cross-correlation of the interferer z( n) 
and the hard-limiter output signal can be expressed 
as

                     (54)

Table 2: Comparison of predicted and measured LSCMA 
output SIR in an environment containing two complex 
sinusoids when the sinusoids are not orthogonal.

The SIR Eq.(22) is calculated by evaluating both 
Eq.(53) and Eq.(54) by numerical integration. The 
resulting SIR gain is shown in Figure 6. The expected 
gain of hard-limiting in this environment is identical 
to the deterministic gain achieved in the sinusoidal 
signal environment. The mean SIR gain measured 
from simulation when the LSCMA is applied to an 
environment containing two FM signals with low-
pass Gaussian messages is also shown in the Figure 
6. The array configuration and AOA of the signal and 

interference are the same as those used previously 
in the sinusoidal environment. The signals are 
generated by low-pass filtering Gaussian noise to a 
normalized bandwidth of 0.125, and then frequency 
modulating using a frequency deviation of 0.1. The 
baseband FM signals have no carrier frequency 
offset. The mean SIR gain is measured from 1000 
Monte Carlo trials using N = 256 samples. Figure.6 
shows excellent agreement between the theoretical 
and measured SIR gain. As further evidence of 
the applicability of the above derivation to other 
CM modulation formats, we apply LSCMA to an 
environment with two QPSK signals. In order for 
the QPSK signals to be CM, we assume that they 
have the same symbol timing, and that they have 
been appropriately match-filtered and sampled 
baud-synchronously.
We also assume that the QPSK signals have no carrier 
frequency offset. Thus each QPSK signal takes on 
one of four values which are drawn randomly from 
the set { ± 1 /  , ±i /  }. The carrier phase of each 
QPSK signal is randomly drawn from a uniform 
distribution for each trial. Simulation results are 
shown in Figure 7. All simulation parameters are the 
same as those used in the FM signal environment. 
Once again, there is excellent agreement between 
the predicted and observed behavior of LSCMA.
In most practical applications, PSK signals with 
non-rectangular pulse shape are used in order to 
reduce the signal bandwidth. Unless the PSK signal 
is appropriately match-filtered and sampled baud 
synchronously it will not be CM. Accurate estimation 
of symbol timing is difficult in the presence of 
strong co-channel interference. However, this is 
precisely the sort of environment where adaptive 
beam forming would be applied. Thus the preceding 
assumption that the desired QPSK signal is sampled 
baud synchronously will not be valid in general. 
One solution to this problem is to apply the LSCMA 
to oversampled data, i.e., sample the digital signal 
at a rate higher than the symbol rate, since the CMA 
can be applied to non-constant modulus signals 
[4]. The symbol timing can be re-estimated as the 

Figure 6. Improvement in output SIR achieved with one itera-
tion of LSCMA with an FM desired signal and an FM inter-
ferer. Solid line indicates theoretical gain, ‘+’ indicates mean 
gain measured in simulations.
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LSCMA converges. Ultimately the LSCMA can be 
adapted using only the baudsynchronous (constant 
modulus) samples instead of the oversampled (non-
constant modulus) data. The analysis framework 
described here can be used to determine the 
performance of the LSCMA with pulse-shaped 
PSK signals. However, such an analysis is beyond 
our scope, and we instead rely on simulation to 
gain some insight into this issue. We would expect 

Figure 7. Improvement in output SIR achieved with one itera-
tion of LSCMA with a QPSK desired signal and a QPSK inter-
ferer. Solid line indicates theoretical gain, ‘+’ indicates mean 
gain measured in simulations.

that the LSCMA will still converge with a pulse-
shaped QPSK signal, but that the convergence will 
be slower. We examine the behavior of LSCMA 
with two pulse-shaped 1f /4 QPSK signals. This 
modulation is commonly used in cellular and 
PCS applications. The signals are sampled at 8 
times It is well known that signals having lower 
excess bandwidth have higher modulus variation. 
Thus we would expect LSCMA to converge more 
quickly with higher excess bandwidth signals. This 
is verified by Figure 8, which shows the SIR gain 
for both 20% and 100% excess bandwidth. The 
simulation parameters used to generate these results 
are the same as those used previously. The SIR gain 
for the 100% excess bandwidth signal appears to 
asymptotically approach  4.7 dB as the initial SIR 
becomes high. The SIR gain for the 20% excess 
bandwidth signal appears to approach 3.9 dB as 
the initial SIR becomes high. These results indicate 
that the LSCMA will converge more slowly with a 
non-constant modulus signal than with a CM signal

D.   CM Signal with Gaussian Interference
We now examine the behavior of the LSCMA 

with a CM signal and Gaussian interference. These 
results are of interest since the distribution of a 
large number of co-channel interferers, as might 

be encountered in CDMA applications, will tend 
toward Gaussian by the central limit theorem. The 
input to the hard-limiter is expressed as :

     (55)
where s(n) is an angle-modulated signal and z(n) is 
unit-variance complex Gaussian interference. Note 
that is uniformly distributed over (- , ]while 
m(n) is Rayleigh distributed with PDF:

               (56)
The cross-correlation of s( n) and d( n) is

Figure 8. SIR gain of LSCMA with non-constant modulus 
pulse-shaped 1f /4 QPSK signals. The results are parametric 
in the percent of excess bandwidth for each signal. The dotted 
curves are based on Monte Carlo simulation, the solid curve is 
the theoretical result for a CM desired signal with CM interfer-
ence. the symbol rate, and Nyquist-type pulse shaping is used. 

               (57)
Where

          (58)       

In a similar fashion it can be shown that
                                      (59)

Where                 
(60)

Both Eq.(57) and Eq.(59) are evaluated by numerical 
integration and used to obtain the SIR gain shown in 
Figure 9. The SIR gain as measured from simulations 
is also shown in Figure 9 and verifies the theoretical 
analysis. The simulation parameters are the same as 
those used previously. As before the SIR gain tends 
to 6 dB as the input SIR becomes high. Note that 
the SIR gain is greater than 0 dB even for an input 
SIR of -10 dB. This would seem to indicate that 
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LSCMA can be expected to converge even at low 
initial input SIR. However, it is important to bear 
in mind that these results are based on probabilistic 
notions. The SIR gain will be a random variable 
for finite block size and Figure 9 shows only the 
expected value of this random variable.We have 
now calculated  and  for several important signal 
and interference distributions. At this point we have 
sufficient information to study the (1,2)-CMA cost 
function using these expressions for  and .

Cost Function Analysis
In order to perform a thorough analysis of any blind 
algorithm, it is necessary to find the stationary 
points of the cost function. A stationary point 
occurs when the gradient with respect to the weight 
vector is equal to zero. These stationary points are 
important because they correspond to local minima, 
local maxima, or saddlepoints of the cost function. 

The gradient of a blind cost function with respect to 
the weight vector cannot, in general, be solved for 
directly. If this could be accomplished, the weight 
vector that minimizes the cost function could be 
solved for directly without the need for iterative 
algorithms. However, it is sometimes possible to 
express the cost function in terms of the output 
SINR and other parameters as opposed to the weight 
vector. This can simplify the analysis. for the (1,2) 
CMA cost function

                     (61)
where  and  are as defined earlier, and p is the 
beamformer output SINR. Note that a and jJ are 
dependent on the SINR  Figure 10 shows the 
(1,2) CMA cost function as calculated from Eq.(61) 
for the case of a CM signal and CM interference. 
Simulation results are included to support the 
analytic results. These simulation results are based 
on a CM signal and a CM interferer. The signal and 
interference are white, and the phase in each case is 
random and uniformly distributed. The (1,2) CMA 
cost function was measured with a data length of 
1024 samples, and averaged over 1000 independent 

Figure 9. Improvement in output SIR achieved with one itera-
tion of LSCMA for a CM signal plus Gaussian interference. 
Solid line indicates theoretical gain, ‘+’ indicates mean gain 
measured in simulations with an FM signal and a Gaussian in-
terferer.

Monte Carlo trials.
Note that the cost function in Figure 10 is symmetric 
about a dB SIR. This is to be expected, since the 
CMA cost function cannot distinguish between a 
CM signal and a CM interferer. Also note that the 
cost function has a global maximum at a dB SIR. 
Since the gradient is small in the neighborhood of a 
dB SIR, a gradient search algorithm, such as steepest 
descent, will converge slowly in this environment 
if the initial SIR is low. Figure 11 shows the (1,2) 
CMA cost function as calculated from Eq.(61) for 
the case of a CM signal and Gaussian noise and 
interference. Simulation results are again included 
to support the analytic expression Eq.(61). The 
simulation parameters are identical to those used 
previously, except that the noise is complex Gaussian 
as opposed to CM. As expected, the cost function 
grows small as the SIR grows large. However, the 

Figure 10. (1,2) CMA cost function versus SIR with a CM 
signal and CM interference. The solid line shows the analytic 
expression, the ‘0’ show simulation results.

behavior for low SIR is very different for Gaussian 
noise than for CM noise. In Gaussian noise, the cost 
function remains large, but the gradient approaches 
zero as the SIR grows small. Since a gradientbased 
algorithm seeks to find a point in the cost function 
where the gradient is zero, a gradient-based CMA 
may become trapped in a low output SIR state. This 
is known as noise capture .In noise capture, the 
output of a CMA-adapted array consists of Gaussian 
background noise; any CM signals received by the 
array are nulled.
Inclusion of Background noise
In this section we examine the effect of background 
noise on the behavior of the LSCMA. We assume  
that the noise has a complex circularly symmetric 
Gaussian distribution and is uncorrelated from 
sensor to sensor. We consider one environment where 
the interference is Gaussian, and another where the 
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interference is CM. In both cases the desired signal 
is QPSK and is assumed to have been match filtered 
and sampled so that it is CM. All simulation results 
are based on 1000 trials with the LSCMA block size 
equal to 256 symbols. The array is linear with eight 

Figure 11. (1,2) CMA cost function versus SIR with a CM sig-
nal and Gaussian interference. The solid line shows the analytic 
expression, the ‘0’ show simulation results

elements and uniform interelement spacing equal to 
. The signal power is measured relative to the unit 

variance background noise, and is termed the Signal 
to White Noise Ratio (SWNR).
First consider the case where the desired signal is 
incident from 0° and a single Gaussian interferer is 
incident from 5°. Since the noise and interference is 
Gaussian, the SINR gain from hard-limiting is given 
by Eq.(57) and Eq.(59). The LSCMA output SINR 
is related to the SINR gain from hard-limiting by 
Eq.(34). The mean LSCMA SINR gain is presented 

in Figure 12 for SWNR equal to 5, 10, and 20 dB. 
The power of the interferer is kept equal to the power 
of the desired signal. The figure shows excellent 
agreement between the measured and predicted SINR 
gain. As the SWNR increases, the optimal output 
SINR increases, and the SINR gain approaches the 
gain obtained when no background noise is present. 
Now consider the case where the interference is CM. 
Since the interference is not Gaussian, calculation 
of the SINR gain is tedious and it is appropriate to 
make some approximations. When the beamformer 
output SINR is low, the dominant source of distortion 
is the CM interferer, and the SIR gain from hard-
limiting can be accurately predicted by the results 
for CM interference, given by Eq.(53) and Eq.(54). 
As the output SINR becomes higher, the interferer 
is nulled, and the background noise becomes the 
dominant source of distortion. However, we have 
shown that in all cases the SINR gain from hard-
limiting approaches 6 dB as the SINR becomes high. 
Therefore the behavior of LSCMA in this case can 
be predicted by using the results for CM interference 
Eq.(53) and Eq.(54) together with Eq.(34). 
Simulation results for an environment similar to that 
described above, except that the Gaussian interferer 
is replaced with a CM QPSK interferer, are presented 
in Figure.13.This figure shows very good agreement 
between the approximate theoretical result and the 
simulation results.

Finite Block Size
The effect of finite block size on classical least 

squares beam forming (with a known training signal) 
has been considered previously [22]. While it should 
be possible to apply some of these same techniques 
to the analysis of the LSCMA, we instead rely on 
simulation to obtain some intuition regarding the 

Figure 12. Improvement in output SIR achieved with one itera-
tion of LSCMA with a QPSK desired signal received with a 
Gaussian interferer and Gaussian background noise. Solid lines 
indicate theoretical result, ‘+’,’0’, and ‘x’ denote mean gain 
from simulation.

Figure 13. Improvement in output SIR achieved with one itera-
tion of LSCMA with a QPSK desired signal received with a 
QPSK interferer and Gaussian background noise. Solid lines 
indicate theoretical result, ‘+’,’0’, and ‘x’ denote mean gain 
from simulation.
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effect of finite block size. The mean behavior of the 
LSCMA should be very close to that predicted by 
the analysis, even for small block size. Furthermore 
the variance of the SIR gain should decrease with 
increasing block size. This is verified by Figure 14, 
which shows the distribution of SIR gain versus 
the LSCMA block size with an FM desired signal 
and an equal power Gaussian interferer. The results 
are based on 1000 trials. Note that a significant 
number of trials had SIR gain of less than 0 dB, 
i.e., the Gaussian interferer was emphasized. The 
LSCMA will not converge to the desired solution 
in these cases, but will instead capture the Gaussian 
interferer. However, for block sizes of 64 samples 
and higher, no trials were observed to have negative 
SIR gain. Thus the algorithm tends to behave in the 

Figure 14. SIR gain of LSCMA versus block size with an FM 
desired signal and a dB Gaussian interferer. Dotted line indi-
cates theoretical gain. Upper and lower traces define region 
where 98% of trials fell.

desired manner as the block size increases. Proper 
selection of the initial weight vector can also help 
ensure LSCMA convergence to the desired solution.

CONCLUSION

We have examined the convergence behavior 
of the LSCMA in some simple environments. The 
results are derived by calculating the improvement 
in SIR caused by hard-limiting a CM signal plus 
additive noise and interference. These results help 
to explain why LSCMA converges, and are helpful 
in explaining the general behavior of LSCMA. 
However, we have made several simplifying 
assumptions which must be addressed in order to 
extend the analysis to more realistic situations. 
We have assumed that the desired signal and the 
interfering signals are not correlated. This does not 
in general allow the direct analysis of correlated 
multipath environments. However, the analysis 

presented here is valid for the case where the multi 
path delay spread is very small. In this case, the 
delayed paths are highly correlated with the desired 
path, and the overall effect is simply to change the 
spatial signature. Many applications require the 
extraction of multiple signals. Algorithms such as 
Multi Target CMA, Multistage CMA, and Iterative 
Least Squares with Projection  can be used for 
this purpose. The results presented here can form 
a basis for analysis of these multi-signal extraction 
techniques. Clearly the variance and distribution 
of output SINR obtained with the LSCMA is also 
an important area for investigation. We finally 
comment on the hard-limit non-linearity. For high 
SIR, the hard-limiter is the optimal non-linearity 
when the desired signal has a constant envelope. 
However, at low SIR other non-linearities can yield 
greater SIR gain. Thus it is possible that non-linear 
functions other than the hard-limit can be used to 
develop blind adaptive algorithms which converge 
faster for low initial SINR.
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