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Abstract

In this paper, the homotopy perturbation method (HPM) which doesn’t small parameter is applied to solve the linear and nonlinear parabolic 
equations. The HPM deforms a difficult problem into a simple problem which can be easily solved. It is implemented with appropriate initial 
conditions. Comparison of the applied methods with exact solutions reveals that the method is tremendously effective.
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INTRODUCTION

The homotopy perturbation method (HPM) was 
first proposed by the Chinese mathematician Ji-Huan 
He [1-3]. Unlike classical techniques, the homotopy 
perturbation method leads to an analytical approximate 
and exact solutions of the nonlinear equations easily and 
elegantly without transforming the equation or linearizing 
the problem and with high accuracy, minimal calculation 
and avoidance of physically unrealistic assumptions. As 
a numerical tool, the method provide us with numerical 
solution without discretization of the given equation, 
and therefore, it is not effected by computation round-
off errors and one is not faced with necessity of large 
computer memory and time. This technique has been 
employed to solve a large variety of linear and nonlinear 
problems [4-10].

In the present study, homotopy perturbation method 
has been applied to solve the parabolic equations. The 
numerical results are compared with the exact solutions. 
It is shown that the errors are very small. However, 
recently, Adomian decomposition method has was 
applied for approximating the solution of the parabolic 
equations [11].

BASIC IDEA OF HE’S HOMOTOPY 
PERTURBATION METHOD

To illustrate the basic ideas of this method, we 
consider the following nonlinear differential Equation:

                                  			   (1)Ω∈=− rrfuA ,0)()(
				  

Considering the boundary conditions of:
                                                  (2)Γ∈=∂∂ rnuuB ,0),(

	
Where A is a general differential operator, B a 

boundary operator, ƒ (r) a known analytical function and 
Γ is the boundary of the domain Ω.

The operator A can be, generally divided into two 
parts of L and N, where L is the linear part, while N is 
the nonlinear one. Eq. (7) can, therefore, be rewritten as:

.0)()()( =−+ rfuNuL        			   (3)

By the homotopy technique, we construct a homotopy 
as ( , ): [0,1]v r p RΩ× →  which satisfies:
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Ω∈∈=−+−−= rprfvApuLvLppvH ],1,0[,0)]()([)]()()[1(),( 0  (4)
Or

0)]()([)()()(),( 00 =−++−= rfvNpupLuLvLpvH  (5)
                          

Where [0,1]p∈  is an embedding parameter and u0 
is an initial approximation of Eq. (2) which satisfy the 
boundary conditions. Obviously, considering Eqs. (10) 
and (11), we will have:

                                              (6)0)()()0,( 0 =−= uLvLvH    
                                            (7)0)()()1,( =−= rfvAvH

  
The changing process of p from zero to unity is just 

that of v(r ,p) from u0 (r) to u(r). In topology, this is 
called deformation, and L(v) – L(u0) and A(v) – ƒ (r) are 
called homotopy.

According to HPM, we can first use the embedding 
parameter p as a “small parameter”, and assume that the 
solution of Eqs. (10) and (11) can be written as a power 
series in p:

⋅⋅⋅+++= 2
2

10 vppvvv       			   (8)

Setting p=1 results in the approximate solution of Eq.(7):

                                                       			   (9)....lim 2101
+++==

→
vvvvu

p

The combination of the perturbation method and the 
homotopy method is called the homotopy perturbation 
method, which lessens the limitations of the traditional 
perturbation methods. On the other hand, this technique 
can have full advantages of the traditional perturbation 
techniques.

The series (15) is convergent for most cases. However, 
the convergence rate depends on the nonlinear operator 
A(v). The following opinions are suggested by He:  

1) The second derivative of N(v) with respect to v 
must be small because the parameter p may be relatively 
large, i.e. p→1. 

2) The norm of  1 /L N v− ∂ ∂  must be smaller than one 
so that the series converges.

APPLICATIONS OF HPM

In this section, we demonstrate the main algorithm of 
homotopy perturbation method on linear and nonlinear 
parabolic equations with initial condition, namely we 
consider:

                                                                      2

2 ( ) ( , ),( , ) [ , ] (0, )
du d u

u g x t x t a b x T
dt dx

= + Φ + ∈             (10)

with the initial condition

( ,0) ( )u x f x=       			                 (11)  
where φ is a function of u. We are looking for the solution 
satisfying Eqs.(1) -(2).

Example1.

This problem was used by Hopkins and Wait [12] to 
provide an example of a problem with a nonlinear source 
term:

2
2

2 ,( , ) [ , ] (0, )u udu d u
e e x t a b x T

dt dx
− −= + + ∈                  (12)

with the initial condition ( ,0) ( 2)u x Ln x= + . In this example 
we have 2( ) u ueu e− −+Φ = , ( )g x,t 0, ( ) ( 2)f x Ln x= = +

We construct the following homotopy:
2

20 0
2( )u udu dudu d u

p e e
dt dt dx dt

−−− = + + −        	               (13)

Assume the solution of Eq. (13)to be in the form:
2 3

0 1 2 3 ...u u pu p u p u= + + + +      	               (14)

Substituting (14) into (13) and equating the coefficients 
of like powers p, we get the following set of differential 
equations:

0 0 0: 0
du du

p
dt dt

− =

0 0

2
- -21 0 01

2: -u ud u dudu
p e e

dt dx dt
= + +

0 0

2
- -22 2 1

12: ( 2 )u udu d u
p u e e

dt dx
= + − −

0 0

2
23 2 2 23 2

2 1 2 1 2 12

1 1
: ( ) ( 2 2 )

2 48
u udu d u

p u e u u u u e
dt dx

ν − −= + − + + − + −

                                                           (15)

Solving the above equations , we obtain

0 n( 2),u L x= +

1 ,
2

t
u

x
=

+
2

2 2 ,
2( 2)

t
u

x
−

=
+
3

3 33( 2)
t

u
x

=
+

1( 1)
,

( 2)

n n

n n

t
u

n x

+−
=

+

                                                           (16)

Therefore from the results we can obtain
2 3 1

2 3

( 1)
( , ) ( 2) ... ...

2 2( 2) 3( 2) ( 2)

n n

n

t t t t
u x t Ln x

x x x n x

+−
= + + − + + + +

+ + + +

( 2) ( 1) ( 2)
2

t
Ln x Ln Ln x t

x
= + + + = + +

+
                                                                  (17)

which is the exact solution of the problem. The absolute 
error for various values of x, t and M (number of terms) 
are also tabulated in Table 1.
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Example 2.

This problem was used by Lawson and et. al. [12] as 
the form:    

                                                                                (18)
2

2
2 ( 1 ) ( ),( , ) [ , ] (0, )t ptdu d u

p u pe e x t a b x T
dx dx

π − −= + − − + + ∈
 

with the initial condition

( ,0) 2sin( )u x xπ=      			               (19)

In this example example we have 2( 1) )(u p uπΦ − −= , 
( )g x,t , ( ) 2sin( )ptt f xpe e xπ−−= =+ .

We construct the following homotopy:
2

20 0
2( ( 1 ) ( ) )u ptdu dudu d u

p p u pe e
dt dt dx dt

π −−− = + − − + + −  (20)

Substituting (5) into (20) and equating the coefficients 
of like powers p, we get following set of differential 
equations:

0 0 0: 0
du du

p
dt dt

− =

2
2

1 01
2 0

0: ) -( 1 ( )ptud u d
p u pe

udu
p

dt d dt
e

x
π − −− − + += +                                                                                      

                                                                         (21)
2

2 1
1

22
2 ( 1: )

du d u
p u

dt d
p

x
π − −= +

2
3 2

2
23

2 ( 1: )
du d u

p u
dt d

p
x

π − −= +

Solving the above equations, we obtain

0 2 2

1 1 1
[2 ( ) ( )]sin( ),t ptu pe e p t p x

p p p
π− −= − + + + − +

1 2 2

1 1 1
(1 )[2 ( ) ( )]sin( ),t ptu p T pe e p t p x

p p p
π− −= − + + + + + − +

2
2 2

2 3 2 3

1 1 1 1
(1 ) [ ( ) ( ) ( )]sin( ),

2!
t pt t

u p t pe e p p t p x
p p p p

π− −= + − − + + − + + +

and so on. Therefore from the equations, we have

2 2

2 2

2
2 2

3 2 3

1 1 1
( , ) [2 ( ) ( )]sin( )

1 1 1
(1 )[2 ( ) ( )]sin( )

1 1 1 1
(1 ) [ ( ) ( ) ( )]sin( ) ...

2!

( )sin

t pt

t pt

t pt

t pt

u x t pe e p t p x
p p p

p T pe e p t p x
p p p

t
p t pe e p p t p x

p p p p

e e x

π

π

π

π

− −

− −

− −

− −

= − + + + − +

− + + + + + − + +

+ − − + + − + + + +

= +

The absolute error for various values of x, t and M 
(number of terms) are also tabulated in Table 2.

Table 1. Absolute error for various values of x, t and M (number of terms) for test problem 1.

x/t 0,2 0,4 0,6 0,8 1
M=5
0,2 8,7288E-8 5,2113E-6 5,5632E-5 2,9414E-4 0,0011
0,4 5,2100E-8 3,1268E-6 3,3532E-5 1,7801E-4 6,4360E-4
0,6 3,2396E-8 1,9530E-6 2,1027E-5 1,1202E-4 4,0630E-4
0,8 2,0859E-8 1,2624E-6 1,3640E-5 7,2890E-5 2,6512E-4
1 1,3842E-8 8,4059E-7 9,1099E-6 4.8819E-5 1,7801E-4
M=10
0,2 2,9388E-13 5,5942E-10 4,5169E-8 1,0028E-6 1,0989E-5
0,4 1,1369E-13 2,1740E-10 1,7638E-8 3,9323E-7 4,3255E-6
0,6 4,6851E-14 9,1057E-11 7,4176E-9 1,6601E-7 1,8321E-6
0,8 2,1094E-14 4,0656E11 3,3245E-9 7,4639E-8 8,2616E-7
1 9,9920E-15 1,9182E-11 1,5736E-9 3,5433E-8 3,9323E-7
M=20
0,2 2,2204E-16 3,3307E-16 5,2625E-14 2,1011E-11 2,1403E-9
0,4 1,1102E-16 6,6613E-16 9,1038E-15 3,4535E-12 3,5318E-10
0,6 4,4409E-16 2,2204E-16 1,5543E-15 6,5525E-13 6,7235E-11
0,8 2,2204E-16 2,2204E-16 2,2204E-16 1,4078E-13 1,4458E-11
1 2,2204E-16 6,6613E-16 6,6613E-16 3,4195E-14 3,4537E-12

(25)

(24)

(23)

(22)
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Table 2. Absolute error for various values of x , t ,p and M (number of terms) for test problem 2

x/t 0,2 0,4 0,6 0,8 1
M=20,p=1
0,2 4,9449E-13 3,5554E-12 5,4122E-10 2,3279E-11 2,4691E-10
0,4 8,0003E-13 5,7551E-12 8,7571E-10 3,7667E-11 3,9951E-10
0,6 8,0025E-13 5,7527E-12 8,7571E-10 3,7667E-11 3,9951E-10
0,8 4,9438E-13 3,5553E-12 5,4122E-10 2,3280E-11 2,4691E-10
1 1,0304E-28 7,4077E-28 1,1276E-25 4,8503E-27 1,1444E-26
M=10,p=2
0,2 1,0967E-10 2,0841E-7 1,7609E-5 4,0750E-4 0,0046
0,4 1,7745E-10 3,3721E-7 2,8462E-5 6,5934E-4 0,0075
0,6 1,7745E-10 3,3721E-7 2,8492E-5 6,5934E-4 0,0075
0,8 1,0967E-10 2,0841E-7 1,7609E-5 4,0750E-4 0,0046
1 2,2850E-26 4,3421E-23 3,6689E-21 8,8901E-21 9,6653E-19
M=20,p=3
0,2 3,8205E-4 5,1061E-4 6,6805E-5 2,8638E-4 3,1596E-4
0,4 6,1818E-4 8,2618E-4 1,0809E-4 4,6338E-4 5,1124E-4
0,6 6,1817E-4 8,2618E-4 1,0809E-4 4,6338E-4 5,1124E-4
0,8 3,8205E-4 5,1061E-4 6,6805E-5 2,8638E-4 3,1596E-4
1 7,9600E-20 1,0639E-19 1,3919E-20 5,9668E-20 6,5830E-20

CONCLUSION

In the present study the homotopy perturbation meth-
od was applied on some periodic equations. The solution 
has been compared with the exact solution. The results 
show that while the traditional perturbation method de-
pends on small parameter assumption, and the obtained 
results, in most cases, end up with a non physical result, 
the numerical method leads to inaccurate results when the 
equation is intensively dependent on time, while He’s ho-
motopy perturbation  method (HPM) overcomes com-
pletely the above shortcomings, revealing that the HPM 
is very convenient and effective. 
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