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ABSTRACT 
Dimensional and tolerance synthesis is a key part of process planning activity that has a profound effect on the 

product cost and quality. This research presents a method for synthesis of dimensions, discrete tolerances, and machine 
process assignment for each machining operation of the given part(s) that minimizes the expected production cost. The 
minimization problem was formulated as a non-linear mixed integer-programming problem and solved using a Genetic 
Algorithm (GA), employing a non stationery penalty function. The GA coding employed generates feasible tolerances 
and machine process assignment for each of the machining operations of the part(s). Optimal machining dimensions of a 
part, given the associated tolerances, were determined using scaled sphere fitting method. Implementation of the 
proposed method on a specific example brought out the ability of the proposed method to obtain better quality solutions 
compared to conventional methods, and the potential to obtain a near optimal solution. 

 

Key Words: process planning, Genetic Algorithm, Tolerance Synthesis. 

        

 

INTRODUCTION 
 

Process planning is the link between the product 
design stage and product manufacturing. The process 
planning activity includes interpretation of design data, 
selection and sequencing of operation to manufacture the 
part, dimensional and tolerance Synthesis, selection of 
machines and cutting tools, determination of cutting 
parameters, choice of jigs and fixtures and calculation of 
machining times and costs. Design information from part 
blue print and information on shop floor resources 
available for production are the inputs to these tasks. 
Dimensional and tolerance synthesis is a key activity in 
process planning that has a profound effect on product 
cost and quality. Hence, it is natural to optimize the 
dimensions and their tolerances towards a measure of cost 
and/or quality. Dimensional and tolerance synthesis in 
process planning deals with determining the exact 
machining dimensions and their associated tolerances to 
meet the blueprint specifications on dimensions and 
assembly requirements. Most of the work published in 
recent years is in the area of tolerancing with emphasis on 
both tolerance analysis, using computer simulation 
models, and in tolerance synthesis, using cost optimization 
techniques.  

 

There are two basic processes in tolerance design: 
tolerance analysis, and tolerance synthesis. Tolerance 
analysis is concerned with the calculation of the final 
tolerance that is specified for a particular component. 
Tolerance synthesis involves the allocation of specified 
assembly tolerances among the component dimensions of 
an assembly to ensure a specified yield. Tolerance 
allocation is concerned with minimizing the total 
manufacturing cost through the allocations of the 
respective component tolerances. 

Bennet and Gupta [1] synthesized tolerances by 
minimizing the sum of the residual tolerance after stack up 
in each design constraint. Szadkowski [2] used a graphical 
representation of the feasible machining processes at each 
stage of the process plan, and used Bellman’s optimum 
principle to determine the economical path. Irani et al. [3] 
presented a comprehensive tolerance chart optimization 
model. Optimal tolerance allocation among the machining 
dimensions was achieved using linear programming; 
while, a mixed integer programming model was used to 
incorporate linear cost-tolerance functions and alternative 
process selection.  
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However, there was no discussion on how the working 
dimensions can be calculated, and the approach was also 
computationally intensive. Ngoi and Ong [4] used a 
relationship matrix and a special path-tracing technique to 
formulate the working dimensions into a system of linear 
equations. In a later paper, they integrated tolerancing into 
the model, and solved the model using a linear 
programming approach. Dimensional synthesis obtained 
using their approach was feasible but not optimal.  

Lee and Johnson [5] developed a stochastic constraint-
optimization model for optimal tolerance allotment with 
manufacturing cost as the objective function. The 
tolerance allocation was constrained by an initially 
specified minimal acceptable yield, spec-yield. The 
problem was solved using a genetic algorithm and a 
truncated Monte Carlo simulation. Zhang and Wang [6] 
proposed a simultaneous optimization model for design 
and machining tolerances with process selection, using 
simulated annealing. Anselmetti and Bourdet [7] 
developed a dimensioning and tolerancing scheme to 
include manufacturing constraints. Their algorithm was 
well adapted to consider unilateral conditions extracted 
from the functional dimensioning and from the machining 
requirements. Zhang and Wang [8] formulated the 
tolerance allocation problem as discrete and continuous 
optimization problem, and solved them using simulated 
annealing and sequential quadratic programming. Based 
on the results for numerous test problems they obtained 
corroborative evidence to show that SA performs better 
than SQP for problems with wide process limits and 
overlapping cost curves. 

As seen from the preceding review, researchers have 
treated dimensional synthesis and tolerance synthesis in 
process planning as separate activities. Optimal machining 
dimensions were determined based on the design data and 
tolerance chart [4]. The vector of synthesized machining 
dimensions is called as the set point. Tolerance synthesis 
was carried out subsequently by optimizing an objective 
that is a function of tolerances [8]. Thus, optimal 
machining tolerances were synthesized separately from 
machining dimensions. Such an approach would be useful 
if the optimization formulation for tolerance synthesis is 
independent of set point, decoupled dimensional and 
tolerance synthesis problems. Cases in which the tolerance 
synthesis formulation was dependent on the set point by 
the way of the objective function [9], constraints [10], or 
both; the tolerance synthesis formulation was solved for a 
Fixed set point. 

Usually, the set point made available from earlier 
dimensional synthesis is used as the Fixed set point and 
such methods are referred to as Fixed set point methods in 
this research. 

The formulation approach of the Fixed set point 
method is approximate because it treats a coupled 
dimensional and tolerance synthesis problem as decoupled 
problems of dimensional synthesis and tolerance synthesis 
that are formulated and solved separately.  

 

 

The resulting benefit is that the solution quality is 
good, because the decoupled problems of dimensional and 
tolerance synthesis could be solved pretty accurately using 
standard deterministic or stochastic optimization 
techniques. Nevertheless, the dimensions and tolerances 
synthesized are suboptimal due to an approximate 
formulation. 

The objective of this research is to synthesize 
dimensions and tolerances by formulating and solving a 
single coupled optimization problem. Machine-Process 
assignments for each of the machining operations are 
considered, based on an earlier approach by Anand [11]. 
The rest of the research report is organized as follows. 
Section 2 deals with key issues in model development and 
presents a formal statement of the model. Section 3 
presents the solution procedure and Section 4 concerns 
with model implementation on one specific examples and 
discussion of the results obtained from implementation. 
Finally, Section 5 concludes the report with a summary of 
findings and conclusions resulting from this research 
work. 
 
 

MATERIALS AND METHODS 
Blueprint drawing of a part specifies the nominal 

design dimensions of components, their tolerances and the 
assembly constraints on the components that constitute the 
part. The shop floor consists of machines that are capable 
of single or multiple processes, and capable of realizing 
discrete tolerances within the range dictated by the 
process. The goal was to determine for each operation of 
every part, the machining dimensions, tolerances, and the 
machine-process assignment. In doing so, one should 
satisfy the blue print requirements, satisfy part demand, 
and minimize the total production cost. The key model 
assumptions are as follows: 

1. Machining operations and their sequence for part 
manufacture are available. 

2. For all processes, the distribution of dimensions 
machined with a specific tolerance follows a normal 
distribution-- nominal dimension as the mean and one 
third of the tolerance as the standard deviation. 

3. Estimates of parameters, A, B, for cost-tolerance 
and time-tolerance models are available. A typical cost-
tolerance and time-tolerance model is of the form: 

A + B/ δ                                                            (1) 

A and B are constants specific to each process-
machine combination and is the tolerance. Diplaris and 
Sfantsikopulos [12] have pointed out shortcomings of δ 
such a modeling. However, the problem formulation is not 
restrictive on the type of time–tolerance and cost-tolerance 
relationships assumed. 

4. The realizable tolerances from processes are 
discrete, and lie within the tolerance range specific for that 
process. 
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In practice, individual yields of the operations are less 
than 100% (i.e. number of acceptable parts), and hence, 
the total part yield for a given process plan is less than 
100%. Consequently, more number of parts than the 
demand has to be produced to satisfy the demand. That is, 

if a part demand is pd , and the part yield of the 

corresponding process plan is pe ; the expected number of 

parts to be produced is pp ed  The production cost (sum 

of manufacturing cost and material cost) based on 

expected demand, pp ed is the expected production 

cost-- henceforth referred as EPC. This is a realistic yield-
based cost estimate compared to the cost estimate based 

on demand, pd
. EPC was used as the objective to be 

minimized and could be expressed as in equation 2. 

 

)2(
dpart)per cost  Materialpartper cost  ring(Manufactu p




part pe
EPC

 

The proposed objective function is a ratio of two sub 
functions, total production cost and the part yield. Based 
on our model assumptions, tolerances allocated influence 
both the production cost and the part yield; while, nominal 
dimensions influence only the part yield. This is obvious 
from the fact that the cost-tolerance model is independent 
of the associated nominal dimension. In essence, both 
tolerances and nominal dimensions influence the objective 
function. 

The former through direct functional relationship (to 
manufacturing cost and hence production cost); while, the 
latter indirectly through the yield term. And dimensions 
that maximize the yield for a given set of tolerances 
optimize the objective function for that set of tolerances. 

Cavalier and Lehtihet [13] proposed a heuristic 
procedure called scaled sphere fitting for dimensional 
synthesis (machining dimensions) that optimizes part yield 
given the process variability of all the machining 
operations. Scott et al. [14] report that scaled sphere fitting 
method performs as well as simulation based search for 
optimizing yields of parts manufactured with normally 
distributed process variations. From model assumption 2, 
feasible tolerance allocated to a particular machine–
process combination is the measure of process variability. 
So, nominal machining dimensions that maximize part 
yield can be synthesized using the scaled sphere fitting 
method. A brief outline of the method is given in the 
following. 

 

Suppose if m design constraints of a given part are 
expressed in terms of the n constituent machining 

dimensions jx  , j =1 to n, as 

maxmin cAXc 
                     (3)                                                            

Where, 
T

nxxxX ],...,,[ 21 is the column vector 

of machining dimensions. A is an m×n matrix called the 
design constraint matrix, row i of which expresses the way 
in which the design dimension, is expressed in terms of 

the machining dimensions, X . Let ia is row i of matrix 

A, and j is the tolerance allocated to the dimension jx . 

Now, maximizing overall yield given the tolerances and 
the design constraints can be accomplished by solving the 
following linear programming problem. 

Maximize r 

Subject to: 

ia  z + r|| ia || ≤ )(max ic  i = 1,2….,n              (4)               

- ia  z + r|| ia  || ≤ - )(min ic  i = 1,2….,n           (5)               

z= [ nzzz ,...,, 21 ] unrestricted                         (6)              

r >= 0                                                                 (7) 

Where, jjj xz  /  is the scaling factor         (8)                

Let z* be the optimal solution for the above linear 
programming problem. The vector of optimal machining 
dimensions, x* can be obtained from z* using equation 9. 
Hence, the dimensions that maximize the yield for a given 
set of tolerances on those dimensions are obtained. 

The following notations are used in the model 
development: 

p: Part index 

i: Component index 

k: Machining operation index 

j: Process index 

m: Machine index 

Following are the list of parameters and functions 
used: 

pik : Last machining operation of component i of part 

p. 

maxmin , jj  : Minimum and maximum max tolerances 

for process j. 

PT : Assembly tolerance for part. 

pd  : Demand for part p in a given time interval. 

mL : Availability of machine m in the above time 

interval. 

p

ks : Variation in stock removal for operation k of part 

p. 

pkj : Binary matrix specifying stage-process 

relationship for part p. 1, if operation k can be performed 
using process j. 0, otherwise 



 76                                                            M. Salehi / IJNES, 3(3): 73-80, 2009 
 

        

pjm
: Binary matrix specifying machine-process 

relationship for part p. 1, if machine m can perform 
process j. 0, otherwise 

p : Unit material cost for part p. 

PA  : Design Constraint matrix for part p. 

Pn  : Number of machining stages for part p. 

min

Pc  : Column vector of minimum values of design 

dimensions for part p. 

max

Pc  : Column vector of maximum values of design 

dimensions for part p. 

)( jm  : Cost for machining to tolerance δ using 

process j on machine m. 

)( jm  : Time required to achieve tolerance δ, for 

machine m, using process j. 

Pe  : Yield of part p. 

Pf  : Feasible region of operational dimensions on 

part p. 

Pu  : Vector of feasible operation dimensions for part 

p. 

)( PP u  : Multivariate normal probability density 

function of operation dimensions for part p. 

The decision variables in model are: 

PX  : PX  = TP

n

PP

P

xxx ],...,,[ 21 , column vector of 

nominal machining dimensions for part p. Where, 
p

kx  is 

the nominal dimension of operation k of part p. 

P  : P  =
Tp

n

pp

p

],...,,[ 21  , column vector of 

tolerances associated with nominal dimensions for part p. 

Where, 
p

k  is the tolerance associated with nominal 

dimension k of part p. 

pkjmy  : Process-Machine selection variable for part p. 

=1, if machine m and process j are selected for 
operation k. 

=0, otherwise 

Minimize Expected production cost: 

  
p k j m

ppkjm

p

kjmpp yed ]}))()[/{(  

Where, ppp duue )(                                                  

(9) 

                    pp fu   

           }:{ maxmin

pppppp cuAcuf    

Subject to: 

Design Constraint: 

maxmin

pppp cXAc                                          (10) 

Design tolerance constraints expressed in terms of the 
constituent nominal machining dimensions. 

Assembly constraint: 

 
i

p

p

k pT
pi

...                                            (11) 

The sum of tolerances assigned to the last stage of 
every component of making up the assembly should be 
less than the assembly tolerance of the part. 

Stock removal constraint: 

),(...1 pks p

k

p

k

p

k                                    (12) 

For every machining stage, the sum of the tolerance in 
the present stage and that in the previous stage of 
machining should be less than the allowable variation in 
stock removal for that stage. 

Process capability constraint: 

),,,(...maxmin mjkpyyy pkjmjpkjm

p

kpkjmj 
   (13) 

If a process is being chosen to machine a certain 
component dimension, then the tolerance of that 
dimension must be within the band specified for the 
chosen process. 

Process and machine feasibility constraint: 

),,,(... mjkpyy pkjmpkjmpjmpkj                  

(14) 

The process-machine combination chosen for a 
particular machining operation should be feasible. 

Process and machine uniqueness constraint: 

 
j m

pkjmpjmpkj pky ),(...1                    (15) 

The process-machine combination chosen for a 
particular machining operation should be unique. 

Machine loading constraint: 

 
p k

mkjm

p

kjmpp
j

mLyew ...)()/(       

(16) 

For every machine, the total of the time taken by all 
the machining operations done on that machine should be 
less than the machine availability. 

Non-negativity constraints: 

kp

k  ...0                                                   (17) 

kx p

k  ...0                                                   (18) 
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The stated formulation is a non-linear mixed integer 
discrete optimization problem. The highly non-linear 
nature of the objective function and the constraints 
coupled with a variety of decision variables preclude any 
attempt to solve this problem by a deterministic non-linear 
optimization technique. Most of the reported solution 
methodologies in literature for tolerance synthesis 
formulations make use of stochastic optimization 
techniques like genetic algorithms or simulated annealing. 
Genetic algorithms are well suited for searching complex 
search spaces quickly by virtue of their evolution and have 
the potential to find near optimal solutions. More 
importantly, they do not pose any restriction on the nature 
of the objective function (continuous, differentiable, 
unimodal etc.) and are zero order methods, i.e. based only 
on objective function evaluation. 

For each operation of a part, there is a set of feasible 
process-machine assignments. These feasible assignments 
are coded as integers and stored in an array. And similarly, 
the set of discrete tolerances for each process-machine 
combination is coded as an integer and stored in another 
array. The solution sub string for each part is represented 
as string of integers; one half containing process-machine 
assignment information for each operation and the other 
half containing the tolerance information for that 
particular operation based on the coding. Thus, for a part 
with n machining operations the solution string length is 
2n. And if there are p parts the string length is 2pn. The 
complete solution string is composed of the sub strings for 
each part. While process capability, process-machine 
feasibility and process-machine uniqueness constraint are 
implicitly built into the GA string coding; rest of the 
constraints are handled using a non-stationery penalty 
function. Here, the penalty for infeasibility is based on the 
sum of constraint violations and the generation number in 
which the infeasible solution is encountered in the 
evolution. 

In order to evaluate the fitness, EPC, of each string 
one has to estimate the set point and the yield 
corresponding to the tolerances coded in the string. 
Optimal set point is obtained using the scaled sphere 
fitting method. Part yield given the set point and 
tolerances was estimated using First order second Moment 
Method [15]. In a nutshell, first the Genetic algorithm 
generates feasible tolerance vectors with machine process 
assignment; set point and yield are computed next; fitness 
of the strings, EPC is then evaluated and the Genetic 
algorithm evolves. The overall schematic of the solution 
procedure is:  

Step1: Start with a population of strings  

Step2: Cull out Sub strings containing tolerance and 
assignment for each part 

Step3: Determining tolerances and set point for each 
part (using scaled sphere fitting) 

Step4: Estimate yield e for each part from set point 
using First order second moment method (FOSMM). 

Step5: If solution is feasible Penalty=0 else Calculate 
penalty based on sum of violated constraints and 
generation number  

Step6: Fitness value = Objective function value 
+Penalty 

Step7: Consolidate sub strings and the fitness value 

Step 8: Create new population using GA evolution and 
go to step1 

The first order second moment method is a convenient 
approximation scheme for the expected part yield when 
the variability of operations is normally distributed. The 
design constraint system for part p, given by equation 12 
can be written as in equations 21 and 22. 

0)(a min  icX ppi    pni ,...,2,1                        

(20) 

0)(a max  icX ppi   pni ,...,2,1                      

(21) 

Where, ia , pX  and pn  have their earlier developed 

meanings. The above system of inequalities 

can be written concisely as, 

0)( xhi           pni ,...,2,1                           

(22) 

The yield can then be expressed as, 


 i

n

i

p

Ypr
2

1
Pr{-1  Yield                     

(23)  

Where, Pr{ ρ } is the probability of a defective part, 

and i  is the event that the constraint 0(x)hi   is 

violated i.e. 0  (x)hi  . A conservative approximation for 

the yield expression is given by equation 24. 

 
 


p pn

i

n

iji
jii prprYield

2

1

2

2

}){max(}{1

      (24) 

 
RESULTS AND DISCUSSIONS 
We implement the proposed model on one sample part 

for dimensional and tolerance synthesis. The inputs to the 
problem, as discussed earlier, are part drawings with 
dimensional constraints on the sizes, the machining stages, 
and sequence of operations through which the part is 
manufactured. The sample part shown in Figure 1 is a 
machined casting with 6 design dimensions (

1D to
6D ) and 

their tolerances. The design constraints can be represented 
as in equation 26.  
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




























































10.000.28

10.000.29

04.000.5

05.000.10

06.000.15

05.000.3

6

5

4

3

2

1

D

D

D

D

D

D

                (25)                  

The process plan involves 6 machining stages 

( 1x to 5x ) in the machining sequence shown in bottom 

part of figure 1. The first machining operation, 1x makes 

use of two surfaces, 1(datum surface) and 2(machined 
surface). The datum surface (surface 1) is placed above the 
horizontal line and the machined surface (surface 2) is 
placed below. In a similar fashion the rest of the 
operations are depicted in the correct sequence. The chart 
obtained from such a representation of processes is called 
a relational chart. 

Next, the design constraints are written down in terms 
of the machining dimensions through a path tracing 
approach. For example, design dimension 

3D  is bounded 

by surfaces 2 and 4. To obtain the constituent machining 
dimensions, move from surface 2 to surface 4 in the 
relational chart. Using appropriate sign conventions for the 
directions can be written as in equation 26. 

423 xxD                                       (26) 

Continuing, the design constraint matrix, design 
constraints in terms of the machining dimensions can be 
constructed as shown in equation 27. 

Most of the parameters used in the formulation 

like pjm , pkj  , pd , mL , etc are conventional data used 

in shop floor management. On the other hand, parameters 
A and B used in the time-tolerance and cost-tolerance 
models can be obtained from the past shop floor data. 
Other data such as tolerance range for processes, 

maxmin , jj  and stock removal value, 
p

ks are readily 

obtainable from data books. 

 







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











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
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


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









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






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






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




















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05.10

06.15

05.3

00010
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5
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2

1

x

x

x

x

x

    

(27)        

Number of processes available, number of Machines 
available and Part Demand are 4, 6 and 10 respectively. 

Discrete tolerances realizable from processes are as 
fallow: 

Process 1: [0.001 0.002 0.003 0.004] 

Process 2: [0.005 0.007 0.010] 

Process 3: [0.01 0.03 0.05] 

Process 4: [0.05 0.06 0.07 0.10] 

 

Stage-Process relationship matrix is, 





















0110011

0110111

1101100

1101100

 

Machine-Process relationship matrix is, 
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



















011100

110111

001101

001101

 

Machine Availability matrix is (in time units) is, 

L = (20 50 50 40 50 100)  

The operators and parameters for genetic algorithm are 
presented in table 1  

 

Figure1. Machined-Casting 

The GA procedure converged to a feasible solution 
consistently. The best solution returned by the GA over 
various trials is summarized in table 2 and the 
performance of the GA is shown in figure 2. The obtained 
results for the production cost and the estimated yield 
were compared with the fixed set point method, in which 
dimensions were synthesized independent of machining 
tolerances. The conventional method of synthesizing 
dimensions from tolerance chart using tolerance chains 
fared very poorly with less than 50% yield. As a result, 
this method was not included for comparison.  

 

Table 1. Operators and Parameters of GA 

 

 
Table 2. Best Solution: Proposed Method 

ix  Nominal 
value 

Tolerance Process M/c 

1 29.0082 0.06 3 6 

2 28.0439 0.02 3 6 

3 23.0239 0.02 3 6 

4 18.0256 0.04 2 6 

5 13.0039 0.02 3 6 

 

The proposed method was able to return feasible 
solutions consistently within realistic computational time. 
Implementation on a PC with 2000MHz Pentium V 
processor took about 1000 CPU 
seconds.

130
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Fig. 2. Example of the performance of the proposed GA 

 

An attempt was made to qualify the EPC of the 
obtained solution in terms of the lower bound for the EPC 
of the optimal solution. A conservative lower bound for 
the optimal EPC can be calculated as follows. For each 
machining dimension, find out the least cost process-
machine combination and then allocate the maximum 
possible tolerance to that dimension. Thus, each 
dimension is manufactured most economically as possible, 
and if one assumes the corresponding yield as 100%, the 
obtained EPC is the conservative lower bound. 

The important assumption in this lower bound 
estimation is that the least cost process machine 
combination for a particular machining dimension allows 
maximum tolerance allocation to that dimension compared 
to the others. This assumption is generally true due to the 
monotonicity of cost-tolerance relationship. 

CONCLUSIONS 
A procedure for simultaneous synthesis of dimensions 

and tolerances in process planning was outlined. Process 
yield was addressed and the shop floor restrictions were 
given adequate treatment. Discretization of the tolerances 
as dictated by the process machine combination makes the 
formulation realistic.  

The model provides scope to synergize the effect of 
dimensions and their associated tolerances in minimizing 
the expected production cost. Comparatively better 
performance of the proposed method over fixed set point 
methods was seen in both cases. In example, higher EPC 
over fixed set point methods was obtained at the cost of 
slightly less yield. More importantly, the solution 
procedure was able to maintain consistent solution quality 
over repeated runs. 

Fixed set point methods synthesize dimensions based 
on the feasible region dictated by the system of equations 
min max c≤Ax≤ c. Trials with test cases have shown that 
for certain feasible regions (e.g. a hypercube) the optimal 
set point obtained by scaled sphere fitting method for any 
random tolerance vector is the same.  

Operator/Parameter Value/Selection 

No of generations 25 

Population size 100 

Constraint handling 
Non-stationary penalty 
function 

Crossover operator Simple crossover 

Percentage of crossovers 90 

Mutation operator Multi-non-uniform mutation 

Percentage of mutations 15 

Selection function 
Normalized geometric 
ranking 

Probability of best 
individual 

0.08 
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Such optimal set points can be called as invariant set 
points, since they are invariant with respect to tolerance 
vector. And such invariant set points, if present, are 
obtainable from sphere fitting and tolerance chart 
methods. In such cases, the set points are no longer a 
function of tolerances and so the distinction between the 
proposed method and fixed set point methods fades away 
and simultaneous treatment of tolerances and dimensions 
is no longer necessary. Hence, it is useful to check for the 
presence of invariant set points in the feasible region 
before using the proposed method. This is can be done by 
generating random tolerance vectors and checking whether 
the set point remains the same. On the other hand, feasible 
regions where the set point is greatly influenced by the 
tolerance vector (e.g. highly skewed feasible regions) the 
distinction becomes significant necessitating a 
simultaneous treatment of tolerances and dimensions. In 
such cases, the results obtained by the two methods 
(proposed and fixed set point) are expected to be 
considerably different. 
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