
Abstract

The cell formation problem (CFP) consists of constructing a set of machine cells and their corresponding product families with 
the objective of minimizing the inter-cell movement of the products while maximizing machine utilization. This paper presents a 
grouping genetic algorithm for the cell formation problem that uses grouping efficiency as a measure. We solve the CFP without 
predetermination of the number of cells. We also make some effort to improve the efficiency of our algorithm with respect to ini-
tialization of the population, keeping crossover operator from cloning . Computational results using the grouping efficacy measure 
for a set of cell formation problems from the literature are presented. The algorithm developed performs well on all test problem, 
exceeding or matching the solution quality of the results presented in previous literature for most problems.
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INTRODUCTION

Group Technology (GT) can be defined as a disciplined 
approach to identifying items such as parts, processes, and ma-
chines by their attributes; analyzing those attributes by looking 
for similarities between and among items; grouping the items 
into families according to similarities; and, finally, increasing 
the efficiency and effectiveness of managing the items by tak-
ing advantage of the similarities [1]. Cellular manufacturing 
(CM) is one of the major applications of group technology. CM 
is described as a manufacturing procedure which produces part 
families within a single line or cell of machines serviced by op-
erators and/or robots that function only within the line or cell.
The foremost problem for cellular manufacturing system (CMS) 
design is cell formation (CF), which groups the machines into 
machine cells and parts into part families. The cell formation 
problem (CFP) started with Burbidge [2], who introduced the 
first method of production flow analysis (PFA). For decades, 
many methods for the CFP have been reported and can be clas-
sified into the following[3]:

•	 Array-based methods
•	 Clustering methods
•	 Mathematical programming-based methods
•	 Graph theoretic methods
•	 Neural network-based methods
•	 Search methods such as Tabu search, Simulated an-
nealing, Genetic Algorithm (GA)

Since our proposed method is based on GA, a review is 
detailed in the next section. GA is one of  the meta-heuristic al-
gorithms, which was introduced by Holland [4]. Genetic algo-

rithms (GAs) are based on evolutionary principles such as natu-
ral selection and survival of the fittest. GAs attempt to evolve 
a population of solutions by giving preference for survival to 
high-quality solutions, while allowing some lower quality solu-
tions to survive in order to maintain a level of diversity in the 
population. This process provides good solutions without pre-
mature convergence to local optima [5]. GAs have been used 
in a wide range of practical fields including design, scheduling, 
system configuration, financial portfolio management, adaptive 
control systems and noisy data interpretation.

The CFP is an NP-hard problem, in which a given machine 
part incidence matrix is explored with the objective of creating 
cells in which the intra-cell machine utilization is maximized 
and the inter-cell movement of the parts is minimized. Although 
some of the optimization algorithms can find the optimal solu-
tion for small- and medium-sized problems, they will suffer 
from the disadvantage that the memory and computational time 
requirements are extremely high and increase exponentially as 
the problem size increases. On the other hand, the objective of 
CFP in the real world is multiple. GAs are capable of dealing 
with a multi-objective problem and searching large regions of 
the solution’s space while being less susceptible to becoming 
trapped in local optima. Grouping genetic algorithms (GGA) 
are a modification of traditional GAs designed specifically for 
grouping problems[6].

The first GA-based solution for the CFP was developed 
by Venugopal and Narendran [7]. They modeled the CFP with 
minimization of the total cell load variation and intercell part 
flows as an objective function and applied GA encoding to the 
problem on a machine–cell string with a given total number of
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manufacturing cells. Billo et al. [8] showed another encod-
ing method that contains a string of part numbers, where cell 

the cutoff for the part numbers comprising the cell. Such an 
example appears as 231|546|978. Joines et al. [9] formulate the 
cell formation problem as an integer-programming problem 
and propose a GA as a solution methodology. Cheng et al. [10] 
and Mak et al. [11] formulate the problem as a travelling sales-
man problem and solve the model using a genetic algorithm. 
Rao et al. [12] encoded the machine–cell chromosome into 0–1 
combinations, in which the predetermined number of cells is 
needed. Zhao and Wu [13] present a genetic algorithm for cell 
formation with multiple routes and objectives. Onwubolu and 
Mutingi [14] develop a genetic algorithm approach taking into 
account cell-load variation. Uddin and Shanker [15] address a 
generalized grouping problem, where each part has more than 
one process route.

Realizing the drawbacks of applying a traditional GA to 
-

egy, the crossover operator and the mutation operator of tradi-
tional GAs to handle the special structure of grouping problems. 
The grouping genetic algorithm (GGA) is popular because of 

bin packing problem, the graph coloring problem, and also the 
CFP. The GGA differs from the classic GA in encoding scheme 
and genetic operators suitable for the chromosomes. De Lit et 

et al. [17] proposed GGA algorithm that had several new fea-

mechanism and the crossover and mutation operators. Tabitha 
L. James and et al. [18] presented a hybrid grouping genetic 
algorithm (HGGA) that combines a local search with a GGA. 
Most previous researchers decided on the number of cells based 
on their experience or compared several sets of numbers of 
cells from 1 to the maximum number, which is equal to the total 
number of machines, and made a choice on the best result.

In this paper, we develop a grouping genetic algorithm 
(GGA) for the machine-part cell formation problem. Using the 

we demonstrate that this approach not only reduces the variabil-
ity in solution quality from that of a traditional GGA, but also 
improves the solution quality over the GGA for many problems. 
On the other hand, proposed GGA can solve the CFP without 
predetermination of the number of cells. We test 14 problems 
from the CFP literature and provide comparisons against sev-
eral algorithms from the literature. The GGA is shown to per-
form well against previously reported solution methodologies, 
exceeding or matching the solutions found for many of the test 
problems.

The remainder of the paper is organized as follows. In the 
-

a model for the cell formation problem is proposed. Finally in 
this section we explain the particular GGA step by step. The 
Results and Discussion section gives a numerical example and 

MATERIALS AND METHODS

solve the CFP as a zero one block diagonalization problem 

(BDP), to minimize inter-cellular movement and maximize the 
utilization of the machines within a cell, where a 0–1 machine-
part incidence matrix (see Fig. 1) is the usual input data to the 
BDP. In the matrix, ai,j =1 if machine j is needed by part i, and 
0 otherwise. The objective is to obtain a matrix such as shown 
in Fig. 2, with the columns and rows arranged in an order cor-

M6 M2 M8 M4 M1 M3 M9 M7 M5  
     1 1  1 10 

     1  1 1 5 

     1 1 1 1 3 

   1 1     1 
  1 1 1     4 

  1 1 1     6 

  1 1      9 

  1  1     7 

1 1        2 

1 1        8 

1 1        11 

 Fig. 2. Machine-Part Incidence Matrix after Diagonalization 

 

M9 M8 M7 M6 M5 M4 M3 M2 M1  
     1   1 1 

   1    1  2 

1  1  1  1   3 

 1    1   1 4 

  1  1  1   5 

 1    1   1 6 

 1       1 7 

   1    1  8 

 1    1    9 

1    1  1   10 

   1    1  11 

Fig. 1: Machine-Part Incidence Matrix Fig. 1. Machine-Part Incidence Matrix

block diagonal matrix can then be used to determine the quality 
-

sure.

Several measures of goodness of machine-product groups 
in cellular manufacturing have been proposed. Chandrasekha-

-

normalized weighting of machine utilization and intercell traf-

Where
    = ratio of the number of 1´s in the diagonal blocks to the total 

   = ratio of the number of 0´s in the off-diagonal blocks to the 

matrix;
q = weight factor (                 ).
Work with this measure demonstrated that it had weak discrimi-
nating power. (i.e. the ability to distinguish good quality group-
ing from bad). For example, a bad solution with many 1´s in 

75%. When the matrix size increases, the effect of 1´s in the 
off-diagonal blocks becomes smaller, and in some cases, the 
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To overcome this drawback, Kumar and Chandrasekharan [19] 

matrix.

Where
  
      = total number of 1´s in matrix A;

        = total number of 1´s outside the diagonal blocks;
   
        = total number of 0´s inside the diagonal blocks.

-
in-cell machine utilization and the inter-cell movement. It has 
a high capability to differentiate between well-structured and 
ill-structured matrices (high discriminating power) and gener-
ates block diagonal matrices which are attractive in practice. 
On the other hand, it does not require a weight factor. Although 
other measures of grouping quality, such as grouping index 
[21], group capability index [22], and doubly weighted group-

-

solution quality measure as this allows for comparisons to be 
made between the algorithms developed in this study with those 
using the same test problems in previous research.

MATHEMATICAL MODEL

Where

m: the total number of machines
p: the total number of parts
c: the total number of cells
X [xil] is an m×c cell membership matrix, where xil =1 if ma-
chine i is in cell l and 0 otherwise
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Y [yjl] is a p×c cell membership matrix, where yjl =1 if part j is 
in cell l and 0 otherwise
A [aij] is a m×p The machine-part incidence matrix, where aij = 
1 if machine j is needed by part i, and 0 otherwise.
According to the above model, for a given machine–part inci-
dence matrix A, the result we want to obtain is the number of 
cells c, machine–cell membership xil and part–cell membership 
yjl after cell formation.

Equation (3) is our objective function for our cell forma-

and (5) ensure that each machine and part can only be assigned 
into one cell. Constraints (6) and (7) ensure that each cell must 
contain at least one machines and one part, respectively. Con-
straint (8) calculates total number of 1´s outside the diagonal 
blocks and Constraint (9) calculates total number of 0´s inside 
the diagonal blocks.

Grouping Genetic Algorithm: In this section the proposed 
group genetic algorithm (GGA) for manufacturing cell forma-
tion will be presented in detail based on its four main elements 
which are:
• solution coding scheme (chromosome),
• 
• initial population generation,
• operators (selection, crossover, mutation).

model, the part–cell membership yjl can be concluded for a giv-
en machine–part incidence matrix aij and machine–cell mem-
bership xil, thereby we must gain machine–cell membership xil, 
or must group machines. Therefore in us chromosomes we only 

-
cal slash (|) that designates the cutoff for the machine numbers 
comprising the cell. Such As /236/54/178/ indicates that ma-
chines 2, 3, 6 are assigned to cell 1, machines 5, 4 are assigned 
to cell 2 and machines 1, 7, 8 are assigned to cell 3.

-
tion is as fallow:

in

out

NN
NNFitness

01

11 (10)

will mislead the CFP into a pointless solution as all machines 
are grouped into one cell or one in each cell. This problem does 
not seem more important than those encountered using general 
GAs, because the number of cells was predetermined. In our 
research, we give a penalty to the illusionary solutions (all ma-
chines are grouped into one cell or one in each cell):

Where    is a positive number as large as it can be.
Initial population generation: The initial population is gen-

erated only once at the beginning and is called old population 

-
ing from 20 to 60 individuals are common in the literature. A 
special procedure was developed to generate a random initial 
population that respects constraint 4 in model (each machine 
type must belong to only one cell) and constraint 6 in model 

][ solutionsyillusionarFitness (11)
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F(i): Fitness value of the ith string 

Ftotal

Selection operation: The selecting of selection operators 
is an important part in GAs. This part is independent of other 
parts in GAs and has no direct relation with the problem and 

-
erator used in Gas. There are many different selection operators 
presented by some researchers. For example, the elitist model, 
the expected value model, the tournament selection and etc. 
Here the Universal sampling method is adopted for selecting 
the good strings and the probability of selecting each string is 
calculated by.

(each cell consists of one machines at least) of the mathemati-
cal model. Each chromosome of the initial population is created 
according to the following procedure:

Step 1. Generate the number of cells (c) randomly, where 
c is a random positive integer and .

Step 2. For each cell, randomly select one machine from 
the set of machines. (This step ensures that each cell must con-
tain at least one machine).

Step 3. Group the remaining m c  machines into c cells 
randomly.

}1,1min{2 pmc

( )

total

F iSI
F

(12)

(13)
 

)(
1

n
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Crossover operation: The crossover operator produces children 
by exchanging information contained in the parents. The cross-
over operator takes two chromosomes selected and tries to mate 
them generating the individuals for the next generation. Cross-
over occurs according to the following steps:

Step 1. Select two crossing sites randomly, determining the 
crossing sections, which stand by the cell group in each of the 

Step 2. Inject the contents of the crossing section of the sec-

3(b)).

Step 3.

Step 4. Apply steps 2 and 3 to generate the second child.

/ 2 5 11 / 1 9 10 14  / 4 6 12 7 8 / 13 3 15  /           2 14 4 / 3 5 7 12 / 13 6 8 10 / 9 1 15 11 / 

(a) Select crossing sections 

/ 2 5 11 / 1 9 10 14 / 3 5 7 12 / 4 6 12 7 8 / 13 3 15 /          / 2 11 / 1 9 10 14 / 3 5 7 12 / 4 6 8 / 13 15 / 

                                (b) Injection                                                   (c) Eliminate empty cell 

Fig 3. Crossover operator

It is possible that the new individuals violate the constraints 
of the mathematical model. There are basically two strategies to 

infeasible solutions in such a way that they will hardly propa-
gate to the next generations. The second is to try to correct the 

chromosomes that violate the constraints. We adopted the sec-
ond strategy as explained below.

4. If the machine sections of two parents are the same, no mat-
ter whether the cell sections of the two parents are the same 
or not, their offspring will always be the same as those two 
parents with the above crossover operator. We do not expect 

-
ciency of our algorithm. In this case, we must compare the two 
selected parents. If machines are grouped into the same cells, 
we copy one of the parents as one child; another child is created 
randomly with the initialization operation.

Mutation operator: A mutation operator acts as a back-
ground operator, which is used to investigate some of the un-
visited points in the search space and also to avoid premature 
convergence of the entire feasible space caused by some super 
chromosomes. Four mutation operators were developed for the 

two groups. Following that, in each cell, a gene is randomly 
chosen and their values exchanged (Fig. 5a). The second muta-

between 1 and (C-1) is randomly drawn. A direction (right or 
left) is also randomly selected and the frontier between the two 
adjacent groups is moved one machine in the selected direction 
(Fig. 5b). The Third mutation operator is a combination opera-
tor, which combine different cells into one cell (Fig. 5c). The 
Fourth mutation operator is a division operator, which divide 
one cell into two cells (Fig. 5d).

/ 2 5 11 / 1 9 10 14  / 4 6 12 7 8 / 13 3 15  /                           / 1 9 10 14 / 2 5 11 / 13 3 15 / 4 6 12 7 8 / 

                    Parent 1                                                                              Parent 2 

(a) Two parents with the same machine groups

/ 2 5 11 / 1 9 10 14 / 2 5 11 / 4 6 12 7 8 / 13 3 15  /        / 1 9 10 14  / 2 5 11 / 4 6 12 7 8 / 13 3 15  / 

               (b) Injection                         (c) Child with the same machine 
groups as its parents 

Fig 4. 

      /1 10 14/2 3 8/4 6 13/5 11 12/7 9 15/                           /1 10 14/15 3 8/4 6 13/5 11 12/7 9 2/ 

(a) Exchange genes 

     /1 10 14/15 3 8/4 6 13/5 11 12/7 9 2/                              /1 10 14/15 3 8/4 6 13 5/11 12/7 9 2/ 

(b) Exchange slash 

     /1 10 14/15 3 8/4 6 13/5 11 12/7 9 2/                              1 10 14/15 3 8/4 6 13 /511 12 7 9 2/ 

(c) Combination cells 

     /1 10 14/15 3 8/4 6 13/5 11 12/7 9 2/                              /1 10 14/15 3 8/4 6 13 /5 11/12/7 9 2/ 

(d) Division cells 
Fig 5. Mutation operators.

RESULTS AND DISCUSSION

CFP example, and then to demonstrate the performance of the 
proposed algorithm tested the grouping genetic algorithm on 
14 GT instances collected from the literature. We compiled our 
algorithm in Matlab7.0 and all the numerical examples were 
tested on a PC with an Intel Pentium 4 2GHz processor, 1GHz 
memory and Winxp Professional Operating System. We show 
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machines and eight parts, and the result after cell formation is 
shown in Fig. 6(b). The total number of cells is two for the op-
timal solution. The performance of the simple CFP is shown in 
Fig 7. and the parameters are given as

Fig 7. is found in the sixth generation, and the CPU time is 
0.4250 s. The initial population and end population are listed 
in table 1. 

Table 1. Sample population of the simple CFP example

10ZP , 7.CP , 3.MP , 25endT . 

End population Initial population NO. 

 Chromosome  Chromosome 

0.78 /32/45/1/  0.66 /231/54/  1 

1 /32/541/  0.68 /1/4/23/5/  2 

0.66 /45/123/  0.55 /13/45/2/  3 

0.78 /1/23/45/  0.4 /12/345/  4 

1 /145/32/  0.78 /1/45/23/  5 

0.68 /23/1/5/4/  0.4 /125/34/  6 

0.62 /51/4/32/  0.39 /4/12/5/3/  7 

1 /154/32/  0.4 /345/12/  8 

0.78 /23/1/45/  0.39 /4/3/5/12/  9 

0.66 /123/5/4/  0.32 /4/1/25/3/  10 

 a) 5×8 CFP b efore grouped

5×8 CFP after grouped 

Fig. 6: Simple CFP before and after Grouping. 

8 6 5 3 2 7 4 1 0 
        1 
        4 
        5 
        2 
        3 

8 7 6 5 4 3 2 1 0 
        1 
        2 
        3 
        4 
        5 

(b) 

Fig 6. Simple CFP before and after Grouping.

Generation

Fig 7. Example of the performance of a simple CFP

SizeSource  NO. 
5×7 King and Nakornchai (1982)  1 

5×18Seiffodini (1989) 2 
6×8 Kusiak (1992) 3 

8×20Chandrasekharan and Raja. (1986a)  4 
8×20Chandrasekharan and Raja. (1986b)

 
5 

16×43 King (1980) 6 
24×40 Chandrasekaran and Raja. (1989)-1 7 
24×40 Chandrasekaran and Raja. (1989)-2 8 
24×40 Chandrasekaran and Raja. (1989)-3 9 
24×40 Chandrasekaran and Raja. (1989)-5 10

 24×40 Chandrasekaran and Raja. (1989)-6 11

 24×40 Chandrasekaran and Raja. (1989)-7 12

 
36×90 King and Nakornchai (1982)

 

13

 
40×100Chandrasekaran and Raja. (1987) 14

 
 

Table 2. Selected GT problems from the literature

Improvement 
 

Proposed 
 Algorithm 

Cheng 
 et al. GRAFIC ZODIAC NO. 

0.00% 73.68 - 73.68 73.68 1 
1.53% 78.54 77.36 - 77.36 2 
0.00% 76.92 76.92 - 76.92 3 
0.01% 85.25 85.24 85.24 85.24 4 
0.00% 58.72 58.72 58.13 58.33 5 
0.15% 54.47 53.89 54.39 53.76 6 
0.00% 100 100 100 100 7 
0.00% 85.11 85.11 85.11 85.11 8 
0.00% 73.51 73.51 73.51 73.51 9 
0.34% 49.54 49.37 43.27 20.42 10 
1.90% 45.42 44.67 44.51 18.23 11 
1.67% 43.21 42.5 41.67 17.61 12 
9.14% 43.71 40.05 39.41 32.73 13 
0.00% 84.03 84.03 8392 83.86 14 

 

The test results are presented in Table 3. As can be seen in 
Table 3, the algorithm proposed in this paper obtained machine/

-
ly, the algorithm obtains, for 7 (50%) problems, values of the 

7 (50%) problems. On the other hand, proposed GGA can solve 
the CFP without predetermination of the number of cells.

Table 3. Test Results
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Conclusion
In this article, we have presented a more efficient and flex-

ible method for solving the cell formation problem (CFP) by 
adopting method of the grouping genetic algorithm (GGA) that 
is also an extension of GAs. Computational experience with the 
algorithm, on a set of 14 GT problems from the literature, has 
shown that it performs remarkably well and the obtained solu-
tions are at least as good as the ones found the literature. On 
the other hand, the numerical examples and comparisons show 
that the CFP can be optimized with respect to both grouping 
machines into cells and deciding on the number of cells us-
ing our method. However, once we are grouping machines, the 
number of parts has no effect on the size of the space solution 
making the algorithm attractive for problems where the number 
of parts is large.

In our research, the effort to improve the representation of 
GAs and their operators is also encouraged. The proposed GGA 
algorithm has several new features such as the chromosome 
codification scheme, correction mechanism and the crossover 
and mutation operators that work directly with the group of 
machines as opposed to individual machines. Some of Further 
research projects that can be conducted are: (i) establishing a 
strategy that generates an initial population with higher score. 
For example, Better results may be obtained if similarity coef-
ficients are used to calculate the similarity between the machine 
and the groups and assign the machine to the group that results 
in the highest similarity coefficient value; (ii) Different strat-
egies in the choice of the selection operator. For example, a 
tournament operator can be used. We can search different selec-
tion operators and choice an operator that gives a good solution 
with a shorter time; (iii) modifying the constraints to consider 
any condition about machines and grouping of them; (iv) modi-
fying the fitness function to consider important design factors 
such as processing time, production requirements and available 
time on machine in a given period, etc.
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