
INTRODUCTION

The MPEG-4 Video supports the representation of video 
objects (VOs) of natural or synthetic origin, coded as separate 
entities in the bit-stream, which the user can access and 
manipulate such as cut, paste, replace and rotate [1]. In the 
MPEG-4 context, a VO can still be the traditional case of a 
sequence of rectangular frames formed by pixels, but a VO 
can also correspond to a sequence of arbitrarily shaped sets of 
pixels possibly with a semantic meaning, given that this higher 
level information is somehow made available (e.g. by providing 
shape or transparency information).

The way VOs are identified is not within the scope of the 
MPEG 4 standard - it is considered as a pre-processing step. 
MPEG-4 provides the means to represent any composition of 
objects, whatever the methods used to achieve the composition 
information. The arbitrarily shaped VOs can be obtained by a 
variety of means such as: automatic or assisted segmentation 
of natural data, chroma key techniques, or synthetic computer 
generated data. Currently the MPEG-4 Video bit stream syntax 
consists of a hierarchy of classes: Video Session (VS), Video 
Object (VO), Video Object Layer (VOL) and Video Object 
Plane (VOP). The VS class is the highest entity in the class 
hierarchy and may contain one ore more VOs (VO1, VO2, 
..., VON), while each VO can consist of one or more layers 
(VOL1, VOL2,…, VOLN) which can be used to enhance the 
temporal or spatial resolution of a VO. Thus the VOL class is 
used to support temporal and spatial scalabilities. An instance 
of a VOL at a given time instant is called a Video Object Plane 
(VOP). However, it is very difficult to extract VOPs [2]; a pre-
processing becomes an important issue. Since VOs usually 
have different motion features from the background and from 
other VOs, most existing automatic VO extraction schemes use 
motion information in video sequences as an important cue to 

produce semantic objects, which is simply extraction of moving 
objects. 

Using interframe difference in change detection is a popular 
method to extract moving objects [2], [3], [4]. The idea behind 
this is to use the image difference between consecutive frames 
and identify significant differences with post-processing. 
Huang et al. used the interframe difference in wavelet domain 
to extract moving objects edges [5]. They have employed 
the three consecutive frame differences in discrete wavelet 
transform (DWT) domain for frames at times (n-1), (n) and 
(n+1) and edge map of frame at time (n) to extract moving edges 
in frame (n). DWT has shift variance and poor directionality 
[6]. Recently, Kingsbury introduced dual-tree complex wavelet 
transform (DT-CWT) [6]. DT-CWT poses properties of shift 
invariance and better directional information with respect to 
DWT. The DT-CWT is a form of DWT that generates complex 
valued coefficients, where it is implemented with dual-trees of 
filters that independently generates real and imaginary parts 
of complex coefficients. At each scale, the DT-CWT produces 
six directional subbands which are oriented at ±15°, ±45° and 
±75° where DWT produces three directional subbands oriented 
at 0, 45 and 90 degrees. We modify the structure proposed by 
Huang et al. method which used DWT to detect moving object 
edges. We employ characteristics of DT-CWT in moving object 
edge detection in video sequences. The proposed algorithm is 
modified version of the algorithm proposed by Huang et al. 
which uses DWT. The change detection in DT-CWT domain 
is used to find significant changes between consecutive frames 
in video sequences. Change detection is performed in a pre-
defined scale of DT-CWT, and Canny edge detector is applied 
on the difference coefficients for each directional subband to 
detect moving object edges which are significant differences in 
difference image. Detected moving edges in each subband are 
merged together to detect final moving edges at specified scale. 
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Detected moving edges are transformed into image domain by 
using nearest neighboring interpolation technique. Thick edges 
caused from interpolation technique are removed using edge 
detection result on the current frame found by applying Canny 
edge detector. We propose an automatic threshold selection 
criterion used for subband change detection part, which makes 
our algorithm free of thresholds. Further more; we compare our 
algorithm and Huang et al. method in the manner of correct edge 
detection and false alarm in well-known video sequences.

This paper is organized as follows; in the following 
section we give moving regions detection algorithm in DT-
CWT domain, this section is followed by the performance 
comparison with Huang et al. method and we finish our paper 
with conclusion.

MATERIALS AND METHODS

Change Detection Between Two Consecutive Frames in 
DT-CWT Domain

The proposed method uses three frame differences in DT-
CWT domain to extract moving object edges, namely frames 
(n-1), (n) and (n+1). The moving object edges between frames 
(n-1) and (n) is combined with the moving object edges 
between frames (n) and (n+1). The object’s edges at frame (n) 
are detected using the result of this combination and the edge 
detector applied in frame (n). The proposed algorithm’s flow 
chart is shown in Fig. 1.

The change detection method is employed to extract 
significant pixel differences in DT-CWT domain between two 
consecutive frames namely (n) and (n-1) in corresponding 
subbands which can be formulated as follows;
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where CDn,n-1,d,s is change detection in DT-CWT domain 
between frames (n) and (n-1) at scale s and directional subband d. 

n,s,dù  is magnitude of complex coefficients in DT-CWT domain 

for frame n at scale s and directional subband d, similarly ,s,dnù 1−

is magnitude complex coefficients in DT-CWT domain for frame 
(n-1) at scale s and directional subband d. Thn,n-1,d,s is a threshold 
used for each subbands, which will be automatically determined 
by analyzing distribution of coefficients in CDn,n-1,d,s. Note that 
the scale s can be any value meanwhile  d Є {±15, ±45, ±75}. 

The idea behind equation (1) is to suppress small differences 
and leave the high differences between consecutive frame 
differences in DT-CWT domain coefficients. Using CDn,n-1,d,s, 
we can employ Canny edge detector to find significant edges in 
CDn,n-1,d,s as follows;

( ),d,sn,n,d,sn,n CDCDM 11 −− Φ= (2)

where CDMn,n-1,d,s is binary map  edge map with edges 

represented with 1 and non-edges are 0,  and ( )Φ  is a function 
used to detect edges, which is Canny edge detector in our 

case. ,d,sn,nCDM 1−  represents moving object edges between 
consecutive frames detected in scale s in directional subband d. 
Note that in order to detect all edges, Canny edge detector with 
a threshold 0 is used.

Figure. 1: Proposed moving object edge segmentation 
algorithm.

Moving Object Edge Detection in DT-CWT Domain
After finding edges in subbands, the overall moving object 

edge map, ,sn,nCDMO 1− , between frames (n) and (n-1) is found 
by combining moving edge maps in all subbands which is 
formulated as follows;

∪
all d

,d,sn,n,sn,n CDMCDMO 11 −− = (3)

After, the DT-CWT of frames (n-1), (n), (n+1) are calculated 
and change detection maps between frames (n-1) and (n) (

,sn,nCDMO 1−
) and frames (n+1) and (n) ( ,sn,nCDMO 1+ ) are 

found using the equation (3), the next stage is the combination 
of change detection maps to find final moving object boundaries 
at scale s. From the perspective of moving object representation 

concept, ,sn,nCDMO 1−  represents moving object edges in frame 

(n) with respect to frame (n-1) and ,sn,nCDMO 1+  represents 
moving object edges in frame (n) with respect to frame (n+1).

In order to find ,sn,nCDMO 1− or 
,sn,nCDMO 1+

 (the process 
enclosed in dashed square in Fig. 1), the flowchart in Fig. 2 

is used where only generation of 
,sn,nCDMO 1−  is demonstrated 

and application for ,sn,nCDMO 1+  is straight forward. In order to 

find moving object edges in frame (n) using only ,sn,nCDMO 1−  

and ,sn,nCDMO 1+  at scale s, binary AND operation is used, 
i.e.;

snnsnnsn CDMOCDMOTMO ,1,,1,,     +− ∩= (4)

where 
snTMO ,
 represents the moving object edges found 

using intersection of ,sn,nCDMO 1−  and ,sn,nCDMO 1+  for 
frame (n) in scale s.



Z. Yetgin and T. Celik / IJNES, 2 (3): 69-74, 2008 71

It is clear that, edges in the current frame (n) found using 

Canny edge detector should exist in the final map 
snTMO ,
 

with sampled version. Using this idea, false edge detections 

in 
snTMO ,
is suppressed by combing Canny edge detector in 

frame (n), i.e.;

)( è    )( n,sn TMOFrame nMO ∩Φ= (5)

where 
nMO  represents moving edges in frame (n), )( è  

is a function to upscale input data to the original image size. 
The meaning of equation (5) is that, the moving object edges 

detected by using 
n,sTMO  may have false alarms, on the other 

hand the edges detected by 
n,sTMO  should also be edges in 

current frame (n) detected by Canny edge detector. Using 
equation (5), one may expect a reduction in false alarm rate. 
Note that, since moving object’s edges are detected using 
DT-CWT, detected edge map 

n,sTMO  is downscaled version 
of original image size. For instance, if we take 2 level DT-

CWT, then the size of 
n,sTMO  is quarter of original image 

size. In order to detect moving  object edges in original image 
spatial grid, upscaling operation is applied where in upscaling 
operation nearest neighboring type interpolation is used. This 
operation also produces false alarms because each edge pixel in 
lower resolution is transformed to finer resolution by copying 
its values to 4 pixels in finer resolution. This effect produces 
thick edges in finest resolution which  is combated by using 
equation  (5).

The change detection used in equation (1) directly depends 

on the value of sdnnTh ,,1, − . The selection of this value is 
important for overall performance of the proposed algorithm. 
Huang et al. used fixed value of thresholds for overall video 
analysis which is optimized with respect to input video. Here, 

we propose automatic threshold selection criterion for sdnnTh ,,1, −

. For each subband ,d,sn,nCD 1−  at scale s, sdnnTh ,,1, −  is found as 
follows;

isdnn mTh 75.2,,1, =− (6)

where mi is center of highest frequency bin of the histogram 

of ,d,sn,nCD 1− . While creating histogram for ,d,sn,nCD 1−  the number 
of bins, B, is found as follows;
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where ó  is standard deviation of ,d,sn,nCD 1− , P  is total 

number of pixels in ,d,sn,nCD 1− , and  ⎣ ⎦  rounds to nearest 

integer. The calculation of sdnnTh ,,1, −  is straight forward 

for ,d,sn,nCD 1− . In Fig. 3 we give visual demonstration of 
proposed algorithm using three consecutive frames for well-
known video test sequence Trevor.

Figure. 2: Flow chart to generate ,sn,nCDMO 1− .

Figure. 3: Visual demonstration of proposed algorithm with 
frames from Trevor sequence.

RESULTS

In this section we give performance analysis of our 
algorithm in well known video sequences, Trevor and Claire 
video sequences. In order to evaluate our algorithm’s and Huang 
et al.’s algorithm performance, it is needed to select appropriate 
implementation for DT-CWT and DWT. For DWT Haar filters 
are used to detect edges. Note that the filters are intentionally 
selected as short as possible in order to make the algorithm 
sensitive for small changes in edge detection process. On the 
other hand, length-10 filters given in [7] is used for DT-CWT. 
For both techniques, the algorithms are performed for two level 
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transform, i.e. s = 2 and their results are upscaled to original 
image’s size by using nearest-neighboring interpolation.

Performance Criterion
Performance is evaluated in the manner of correct moving 

edge detection rate and false alarm rate. The false alarm rate and 
correct detection rate is evaluated using the following criterion; 
each video sequence is manually segmented into moving 
objects and non-moving objects parts and the detected edges 
in non-moving parts are counted as false alarm, meanwhile 
detected edges in the moving parts are counted as correct 
moving edges. 

Finding Optimum Threshold Value for DWT-based 
Moving Object Edge Segmentation Method
In order to compare our method with Huang et al.’s method 

a threshold is needed for their method, note that our proposed 
method does not need such a threshold selection scheme. For 
this purpose we do the following; for a range of thresholds, we 
counted correct detected edges and false detected edges for each 
sequence. In counting process, we set a threshold value then for 
a range of video sequences we find averages of correct and false 
detected edges. For Claire video sequence, frames from 2 to 51 
are used for this process, average of 50 frames is evaluated and 
for Trevor sequence, frames from 61 to 110 are used. Results 
of this process are summarized in Fig. 4. Using Fig. 4 (a) and 
(b), threshold values are selected for Huang et al.’s method. 
Thresholds are settled to 2.0 where for Claire sequence average 
of correct detection rate is around 756 pixels and average of 
false detected edges is around 36 pixels, and for Trevor sequence 
average of correct detection rate is around 1007 pixels and 
average of false detected edges is around 66 pixels.

In Fig. 5 detected moving object edges for Claire sequence 
is shown for frames 92 to 94; the first column shows the original 
video sequence, the second column shows moving edges 
detected by our algorithm where automatic thresholding is 
applied and the third column shows the moving edges detected 
by Huang et al.’s algorithm. It is clear that moving object edge 
detection capacity of our algorithm is much better than the 
Huang et al.’s algorithm. This is apparent by visual observation 
of number of detected moving object edge pixels.  In order to 
show numerical performance results Fig. 6 is presented.  In Fig. 
6 correct detection and false alarms for proposed algorithm 
and Huang et al.’s algorithm is shown for the Claire sequence 
for frames from 100 to 200. Fig. 6 depicts that, our algorithm 
outperforms Huang et al.’s algorithm both in high detection 
rate and low false alarm rate. Proposed algorithm performs the 
average correct detection rate of 1104 pixels with 28 false alarm 
pixels; on the other hand the correct detection rate for Huang et 
al.’s algorithm is around 645 pixels with 37 false alarm pixels.

(a)

(b)
Figure. 4: Average correct detection and false detection counts 
for Huang et al.’s algorithm ; (a) Claire video sequence, and (b) 
Trevor video sequence.

Quantitative and Visual Comparisons

Figure. 5: Moving object edges of Claire video sequence for 
frames 92 to 94; fi rst column is the original frame, second 
column is moving edges found using proposed algorithm, third 
column is the moving edges using Huang et al.’s algorithm.
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(a)

 
(b)

Figure. 6: Correct detection and false alarm comparisons for our 
algorithm and Huang et al.’s algorithm in Claire video sequence; 
(a) Correct detection comparison graph, and (b) False alarm 
comparison graph

Fig. 5 reflects the directional moving edge detection strength 
of proposed algorithm. Moving edges around face area are much 
more detailed than the Huang et al.’s algorithm. Huang et al.’s 
algorithm misses some edges around facial features, e.g. mouth, 
eyes, eyebrows and nostrils, and face boundary. Proposed 
algorithm performs very well in detecting moving edges around 
both facial features and face boundary. This is mainly caused 
from the fact that DT-CWT has better directional response 
than DWT. Proposed method detects weak directional moving 
edges around the face area and left-shoulder of Claire. Claire 
sequence has very small motion in it; head motion, shoulder 
motions, and both of head and should motions. Fig. 6 (a) shows 
that both methods have similar detection characteristics but 
proposed method detects more correct edges with respect to 
Huang et al.’s method with fewer false alarms. Peaks in Fig. 6 
(a) come from the motion of Claire. In some frames, she both 
moves her head and some parts of her shoulders and arms at the 
same time where both algorithms performs high detection rates 
with respect to other frames (peaks in graphs). However the 
proposed algorithm detects more details with respect to Huang 
et al.’s algorithm.

Figure. 7:  Moving edges of Trevor video sequence for frames 
85 to 87; the fi rst column is the original frame, the second column 
is moving object edges found using our algorithm, and the third 
column is the moving edges using Huang et al.’s method.

Similar to Fig. 5, detected moving object edges for Trevor 
sequence is shown in Fig. 7 for frames 85 to 87; the first column 
shows the original video sequence, the second column shows 
moving edges detected by our algorithm where automatic 
thresholding is applied and the third column shows the moving 
edges detected by Huang et al.’s algorithm. It is clear that moving 
object edge detection capacity of our algorithm is much better 
than the Huang et al.’s algorithm which was the case for the 
Claire video sequence too. This is apparent by visual observation 
of number of detected moving object edge pixels.  In order to 
show numerical performance results Fig. 8 is presented.  In Fig. 
8 correct detection and false alarms for proposed algorithm and 
Huang et al.’s algorithm is shown for the Trevor sequence for 
frames from 61 to 120. Proposed algorithm performs the average 
correct detection rate of 1970 pixels with 68 false alarm pixels; 
on the other hand the correct detection rate for Huang et al.’s 
algorithm is around 1009 pixels with 121 false alarm pixels. The 
correct detection rate for the proposed algorithm is almost twice 
the correct detection rate of Huang et al.’s algorithm, meanwhile 
false detection rate is almost twice better than the false detection 
rate of Huang et al.’s algorithm. 

Fig. 6 reflects the directional moving edge detection strength 
of proposed algorithm. Moving edges around foreground object 
are much more detailed than the Huang et al.’s algorithm. 
Huang et al.’s algorithm misses some edges around foreground 
objects, e.g.  head boundary, right and left arms and shoulders 
boundary. Proposed algorithm performs very well in detecting 
moving edges of foreground object boundaries. Similar to Claire 
sequence, this is mainly caused from the fact that DT-CWT 
has better directional response than DWT. Proposed method 
detects even weak directional moving edges around foreground 
object. Trevor sequence has almost equal motion in its frames; 
head motion, shoulder motions, and both of head and should 
motions are almost available at each frame of sequence. This 
fact is reflected in Fig. 8 (a) and (b). The number of detected 
moving object edges is almost the same for each frame with 
some fluctuations in it. It is also clear from Fig. 8 that proposed 
algorithm outperforms Huang et al.’s algorithm both in high 
detection rate and low false alarm rate. 
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(a)

 
(b)

Figure. 8: Correct detection and false alarm comparisons for 
our algorithm and Huang et al.’s algorithm in Trevor video 
sequence; (a) Correct detection comparison graph, and (b) 
False alarm comparison graph.

The shape characteristics of Fig. 8, 9 (a) and (b) reflect 
that both algorithms detect some major features which are 
very strong difference coefficients in wavelet domain. The 
improvement in high detection rate of proposed algorithm 
comes from the fact that DT-CWT more sensitive to directional 
information than DWT do. 

DISCUSSION

In this paper, we proposed unsupervised moving object 
edge detection in DT-CWT domain. The proposed algorithm 
is modified version of the algorithm proposed by Huang et al. 
which uses DWT. The change detection in DT-CWT domain is 
used to find significant changes between consecutive frames 
in video sequences. Change detection is performed in a pre-
defined scale of DT-CWT, and Canny edge detector is applied 
on the difference coefficients for each directional subband to 
detect moving object edges which are significant differences in 
difference image. Detected moving edges in each subband are 
merged together to detect final moving edges at specified scale. 
Detected moving edges are transformed into image domain by 
using nearest neighboring interpolation technique. Thick edges 
caused from interpolation technique are removed using edge 

detection result on the current frame found by applying Canny 
edge detector.

The proposed algorithm outperforms Huang et al.’s 
algorithm both in high detection rate and low false alarm rate. 
The performance improvement is mainly caused from shift-
invariance and directionality properties of DT-CWT. We also 
propose an automatic threshold selection criterion which makes 
proposed algorithm free of threshold selection for subband 
change detection map extraction which is not the case for 
Huang et al. method.

Since DT-CWT is implemented in two parallel DWT with 
different low-pass and high-pass filters for lower and upper 
DWT branches, it can be applied for real-time applications. 
This makes our algorithm suitable for real-time application 
where moving object edges are required.
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