
INTRODUCTION

The concept of symmetry, which is a fundamental physical 
quantity in gaining on understanding of the physical laws 
governing the behavior of nuclei especially in the applied 
nuclear physics, has played an increasingly important role in 
physics, in particular 20th century with the development of 
quantum mechanics and quantum field theory [1-11]. Although 
the lowest levels of even-even nuclei are well-known signatures 
of systematic structure and symmetry, of course, not new, 
there has been little study of their energy relationship over the 
entire nuclear chart. During the past few years, many scientists 
have been proposed to solve this problem in the framework of 
different models such as interacting boson model (IBM) [12-
34] one of the most used to describe the symmetry properties, 
variable moment of inertia (VMI) model [35-37], and the others 
[38-46]. Most of these studies concern the ground band (yrast 
band) of the even-even nuclei from Z=38 to 82 and the ratio 

+ +
4/2 1 1R = E(4 ) / E(2 ) defined from 1.2 1.6−∼  near doubly magic 

nuclei to 2.0 2.2−∼  in vibrational nuclei, 2.5-3.0 in transitional 
species, and 3.3∼  in well-deformed symmetric rotor nuclei. 
In addition, symmetry has usually a central role in collective 
motion of the nucleons which may be described as a vibrational 
motion about equilibrium position and a rotational motion 
that maintains the deformed shape of nucleus. The existence 
of collective energy level bands of rotational and vibrational 
types can now easily be identified from nuclear spectra data 
[47] of many deformed light even-even nuclei. Thus, as it is 
well known, deformed nuclei have rotational energy spectrum 
due to their collective motion [1, 2]. These energy spectra 
generally are defined by the total angular momentum I, parity 
π and the quantum number K which is the projection of the 

angular momentum on the intrinsic coordinate axis of the 
nuclei. Here, K which is the conserved quantum number for 
the nuclei having axial symmetry could take values K = I, I-1, 
...., -I. Indeed, K which is defined the angular momentum of 
the nuclei depending on the attached coordinate system, has a 
definite and constant value for a specified intrinsic state of any 
deformed nuclei. Intrinsic energy E

k
 of slowly rotating nuclei 

depends on K quantum number and it forms the base of the 
rotational energy band, and the energy eigenvalues of such a 
band could be defined as, 

( , ) ( )= +K rotE I K E E I  (1)

where Erot(I) is the rotational energy. 

The aim of this paper is to obtain the systematic structures 
and 4/2R  energy ratio of the yrast bands from experimental data 
and its applications to deformed light even-even nuclei. Many 
deformed light even-even nuclei, especially with mass ranging 
from Z=20 to 34, have stable deformation in their ground-states 
[48]. Such nuclei may rotate due to interactions with an external 
incident particle or emitting the particle. 

OUTLINE OF ANALYTIC FORMULA

Rotational energy of an axially symmetric deformed even-
even nucleus is given as [2],
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where I and K are the total angular momentum and its projection 
on the axis of symmetry, respectively, of a nucleus; 3J  and 0J  are 
the principal moments of inertia about a symmetry axis and an 
arbitrary axis perpendicular to the symmetry axis, respectively. 
Authors of Ref. [2] have used the hydrodynamic moments of 
inertia restricting the deformed nuclear surface by a quadropole 
term only and so these nuclei are, on the average, symmetric: 
that is 3 0=J . Therefore, Eq. (2) will be meaningful only if the 
value of K is taken identically zero. This yields what is often 
known as the ground state rotational band, and then we come to 
the following rotational energy equation:
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=

, K = 0  (3)

The above expression is in good agreement with the 
observed low-lying energy levels of the even–even deformed 
nuclei, which is the values of angular momentum I, I = 0, 2, 4, 
6,…. As mentioned above the energy level sequence in such a 
case is called as ground-state rotational band having positive-
parity. 
More generally, the rotational energy for the ground state bands 
of even-even nuclei, could be written as an infi nite power 
series,

( ) ( ) ( ) ( ) ( )2 3 42 3 41 1 1 1 ....rotE I A I I B I I C I I D I I= + + + + + + + + (4)

where A is the well-known rotational constant parameter 
for sufficiently small values of I, and B, C, D,…, are the 
corresponding higher-order constant parameters [49, 50].

In the view of above-mentioned, it seems that the ground 
state energy bands of deformed even-even nucleus have zero 
quantum number (K=0), together with even parity and even 
nuclear angular momentum. Their energy eigenvalues could 
be defined by even number starting from zero, as 0+, 2+, 4+, 
6+,…. We could obtain an energy ratio, E(I+)/E(2+), to define 
the energy eigenvalues if we use the equation given by Ref. 
(35), such that,
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In Eq. (5), E(2+) represents the energy of the first excited 
state and could be set as the unit energy for the even-even 
nuclei. Using Eq. (5) one can be written in the following form,

1 3 1(2 ) : (4 ) : (6 ) : (8 ) : (10 ) : ... 1:2 : 3 : 5 : 7 : ...
5 5 4

R R R R R+ + + + + =  (6)

However, the real values are a little different from the above 
ratios in Eq. (6) and these differences are getting smaller and 
smaller starting from I=8. The deviation of the rotational energy 
from I(I+1) has resulted from the change as a dependence of the 
variable moment of inertia, and the dependence of the rotational 
energy to some other factors [1-3, 35-39 ]. Since we will only 
concentrate on the symmetry properties and R4/2 energy ratio 
of the ground state (yrast) energy bands, in this study, the 
natures and other details of the energy bands of interest are not 

emphasized. On the other hand, we can remark that the energy 
eigenvalues of the ground states could be given by Eq. (4) more 
precisely for the various deformed light even-even nuclei and 
their values could be extracted from the experimental data [47]. 
If we represent R(4+)/R(2+)= r in order to find out symmetry 
properties of the yrast energy bands instead of R(4+)/R(2+), in 
consideration of the measured energy eigenvalues [47] we get 
an approximated equation, 

(2 ) : (4 ) : (6 ) : (8 ) : ... 1: : 2 : 3 : ...+ + + + ≈R R R R r r r   (7)

Instead of Eq. (6), if we consider the experimental data, we 
should emphasize once more here, that the last approximated 
equation gives more accurate results than the previous one Eq. 
(6). The last expression is clearly defines the “equal intervals” 
and illustrates the “symmetries” in the energy bands. If we 
rewrite Eq. (7) starting from the ratio R(4+) then we get the 
ratio of integers as, 

(4 ) : (6 ) : (8 ) : ... : 2 : 3 : ...+ + + ≈R R R r r r   (8)

An example of such a symmetry is obtained using the ratio 
R(I)=E(I+)/E(2+) and starting from I=4, presented in Fig. 1 for 
the yrast bands in the some deformed even-even light nuclei. 

Figure 1. Mass dependence of energy ratios for the yrast 
(ground state) bands of deformed light even-even nuclei. The 
horizontal dashed lines indicate the values given by the I (I+1) 
rule.

We may choose an energy unit E1(I1
π)-E0(I0

π) and consider 
the related ratios to define the mentioned symmetry for the 
excited bands of the even-even nuclei. Here, E0(I0

π) is the 
energy of the lowest state having I0 spin and π parity, and E1(I1

π) 
is the energy of the first excited state above the E0(I0

π) having 
suitable I

1
 and π quantum numbers. In the calculations of the 

energy ratio for excited bands, instead of Eq. 5, one could use, 
in general, 
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where ( )n nE I π

 
is the energy of the n’th excited state above the 

( )0 0
nE I π  having suitable I

n
 and π quantum numbers. In that case 

using the experimental data [47] we get, 

( )2 3 4: : : ... : 2 : 3 : ... : 1≈ −R R R r r r n r   (10)

where, 
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In Eq.(11), the values of energy ratio, r, have changed 
between 2.20 and 2.32 for yrast bands of deformed light even-
even nuclei.

Figure 2. Mass dependence of energy ratios R4/2 = E4/E2, 
ratio of energy of the first 4+ state to the energy of the first 2+ 
state, for deformed light even-A nuclei. The horizontal line at 
the top indicates the values given by the I (I+1) rule. The values 
of energy ratios E4/E2 are calculated for the ground state bands, 
and compiled values of energy ratios E4/E2 are taken from 
interacting boson model (IBM) Ref. [33] and variable moment 
of inertia (VMI) model Ref. [35].

RESULTS AND DISCUSSION

In the present study we have seen that mass dependence of 
energy ratios for the ground state rotational bands in deformed 
light even-even nuclei approximately satisfies Eq. (11) in Fig. 1 
and Fig. 2. From Fig. 1, we have seen that the obtained energy 
ratios calculated by Eq. (11) demonstrate a well consistency 
with Eq. (10) and also show the systematic structure of energy 
levels for the yrast band in deformed even-even nuclei from 
Z=20 to 34. Indeed, in Fig. 2, we have seen that the our 
calculated energy ratios, 4/ 2 4 22.20 / 2.32≤ = ≤R E E , denote a 
well consistency with I(I+1) rule, values of calculated Eq. (5), 
respect to interacting boson model [33] and variable moment of 
inertia (VMI) model [35]. Thus, these results obtained by Eq. 
(11) almost represent the empirical data values for all energies 
quite well for the nuclei of interest. This situation illustrates 
almost equidistant rotation nature of the lower spectra of 

the nuclei considered. Therefore, the present study we shall 
consider the rotational excitation modes of almost equidistant 
form to calculate the systematic structure and R4/2 ratio of 
energy levels. 

CONCLUSION

In the view of presented study, we can conclude that the 
systematic can be used as means of predicting the whole low-
energy collective level scheme of even-even nuclei of interest 
on the basis of a minimum of information (e.g., a few energy 
ratios). Finally, we remark that this property of the energy 
spectra is very important since the possibility of the use by 
the collective modes in the identification of the physical 
characteristic such as level density parameters in the applied 
nuclear physics. 
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