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Abstract
Multiple Signal Classification   (MUSIC) algorithm is a tool to estimate DOA of incoherent signals. Spatial smoothing of MUSIC has been 

introduced to estimate DOA of coherent and completely correlated signals. Previous researches simulated and evaluated the performance of 
conventional and Spatially Smoothed versions of MUSIC algorithm for special cases. In this investigation in addition considering AWGN the effect 
of multipath fading in different SNRs, number of sensors, number of signal samples (snapshots), distance between array elements and number 
of sub-arrays for MUSIC and smoothed version has been considered. Simulations have been done for two cases, two completely coherent paths 
as case one and three paths with two completely coherent paths and one incoherent as second one. Simulation results show high performance of 
MUSIC algorithm to estimate incoherent signals. Coherent signals will be estimated via spatially MUSIC algorithm as well as incoherent signals 
in MUSIC algorithm.
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INTRODUCTION

 The MUSIC algorithm that presented first time by [1-3] has 
been used more in recent years. MUSIC algorithm can only be 
used to estimate incoherent signal sources. For coherent signals, 
the performance of MUSIC will be degraded and it is not an 
efficient tool. Recent studies shows MUSIC can approximately 
provide a solution of multipath fading, Also multipath fading 
causes similar receiving signals in chip length in some systems 
like CDMA [4-6]. )(θ ma  is the array response (or steering) 
vector, corresponding to the DOA of the m ht

 signal, and is 
defined as :
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Where T is the transpose operator, and λ  is the wavelength 
of the incident signals. The combination of all possible steering 
vectors forms the array manifold matrix A. The MUSIC 
algorithm starts by applying temporal averaging over K 
snapshots (or samples) taken from the leads to forming a spatial 
correlation (or covariance) matrix R defined as: 
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Where H denotes the Hermitian operator. Substituting x (t) 
from (1) into (2) results in:
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Where SSR the signal covariance matrix is σ 2

n  is the noise 
variance and I is an identity matrix of size NN × .

In the MUSIC algorithm, the eigenvectors nE of matrix 
R that correspond to the smallest Eigen-values from the noise 
subspace. The eigenvectors nE  and the steering vectors that 
make up matrix A are used to form the MUSIC angular spectrum 
which is given by:
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The orthogonality between the eigenvectors gives rise to 
peaks in the MUSIC angular spectrum. These peaks correspond 
to the directions of arrival of the signals impinging on the sensor 
array. It is well known that with an N-element sensor array, 
MUSIC can detect up to N-1 uncorrelated signals [7-9]. This 
paper is structured as follows. Section II, has a brief overview 
on MUSIC and Spatially smoothed MUSIC and their models. 
Section III describes Input data and simulation assumption and 
simulation results of MUSIC and spatially smoothed version in 
two coherent signals and other including three signals that one 
of them is incoherent. In addition simulation results as figures, 
some table can be found that shows percentage of successful 
iterations and average as well as variance of DOA estimation of 
two algorithms. Section IV concludes this investigation.  

Received: February 04, 2011
Accepted: February 12, 2011



2828
T. Sedghi et al / IJNES, 5 (2): 27-31, 2011

SPATIALLY SMOOTHED MUSIC 
ALGORITHM

 The signal covariance matrix SSR  is a full-rank matrix 
(i.e., non-singular) as long as the incident signals on the sensor 
array are uncorrelated, which is the key to the MUSIC Eigen-
values decomposition. However, if the incident signals become 
highly correlated, which is a realistic assumption in practical 
radio environments, matrix SSR  will lose its non-singularity 
property and, consequently, the performance of MUSIC will 
degrade severely. In this case, spatial smoothing (SS) must be 
used to remove the correlation between the incident signals 
by dividing the main sensor array into forward/backward 
overlapping sub-arrays and introducing phase shifts between 
these sub-arrays. The vector of the received signals at the htk  
forward sub-array is expressed as: 
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Where (k-1) denotes the htk  power of the diagonal matrix 
D given by: 
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The spatial correlation matrix R of the sensor array is then 
defined as the sample mean of the covariance matrices of the 
forward sub-arrays:
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Here L is the number of overlapping sub-arrays. When 
applying FSS, the N-elements sensor array can detect up to N/2 
correlated signals [7].

SIMULATION RESULTS

At first two coherent signals with different amplitude, 
impinge on the array from two paths with different powers has 
been simulated. If delay time between two signals less than a 
chip length then two completely coherent signals will be made. 
In this state the incident signal covariance matrix is not full-
rank matrix, hence the performance of MUSIC algorithm will 
degrade severely and it cannot estimate the DOA. For this case 
spatially smoothed algorithm will be suggested. It is assumed 
that the signals and noise are stationary and ergodic complex-
valued random processes with zero mean. In addition, the 
noise and signals are uncorrelated. In all simulations have been 
considered:

1- The number of samples (snapshots) is 1000.
2- Two uncorrelated signals with same and different power 

incident at angels °°− 02,04  for coherent ones and °05  for 
incoherent one.

3- Appropriated iterations are 500 or 1000 times.
 Figures 1 to 4 shows the simulation results of MUSIC and 

spatially smoothed version for two completely coherent users. 
In these figures effect of variations such as number of array 
elements and their spaces, number of snapshots and SNR are 
presented.  
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 a.  SNR = [5, 5]
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   b. SNR= [20, 20]
Fig.1 DOA Estimation with Two Coherent Signals Belong to 

°°− 02,04 , 100 Snapshots, N= 6 and L=4
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a.  N=6

b.  N=16

Fig.2 DOA Estimation with Two Coherent Signals from 
°°− 02,04 , 

100 Snapshots, SNR= [5, 5] and L=4
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a.  Snapshots= 200

b.  Snapshots = 1000
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Fig.3 DOA Estimation with Two Coherent signals from 
°°− 02,04 , 

N=6, SNR= [5, 5] and L=4.

a.  L = 5 , Element spacing= 2/λ    

b.  L = 4 , Element spacing= 4/λ
Fig 4. DOA Estimation with Two Coherent Signals from °°− 02,04 , 
N=6, SNR= [5, 5] and  100 Snapshots.
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b. SNR = [5, 5, 5]

Fig.5  DOA Estimation with Two Coherent Signals from   °°− 02,04  
and One Incoherent Signal Belongs to °05  , N=6, L=5 and 100 
Snapshots.
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Fig.6. DOA Estimation with Two Coherent Signals Belongs to 
°°− 02,04  and One 

Incoherent Signal Belongs to °05 , N=16, SNR= [5, 5, 5], L=5 and 100 Snapshots.
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Fig 7. DOA estimation with two coherent signals from  °°− 02,04  
and one incoherent signal from °05 , N=6, SNR= [5, 5, 5], element 
spacing = 4/λ  , L=5 and 100 Snapshots.
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SNR

Percentage
Of

Successful
Iterations

DOA 
Estimation 

average

Variance
 of 

Angels

10,10,10 100
-39.9934
19.9988
49.9940

0.0006
0.0002
0.0014

5,5,5 100
-40.0056
19,9924
49.9876

0.0011
0.0044
0.0012

15,15,15 100
-39.9986
20.0016
50.0002

0.1383 301 −×

0.1978 301 −×

0.0200 301 −×

20,20,20 100
-40.0000
20.0000
50.0000

0.0000
0.0000
0.0000

5,10,20 100
-39.9948
20.0070
49.9998

0.0009
0.0018
0.0000

Table 1. Effect of SNR in Spatially smoothed MUSIC    Table2. 
Effect of snapshots in Spatially smoothed MUSIC

Snapshots

Percentage
Of

Successful
Iterations

DOA 
estimated 
average

Variance
 of 

Angels

100 100

-40.0056

19,9924

49.9876

0.0011

0.0044

0.0012

200 100

-39.9934

19.9924

49.9878

0.0007

0.0029

0.0012

500 100

-39.9956

19.9962

50.0080

0.5818 301 −×

0.4064 301 −×

0.8176 301 −×

1000 100

-39.9996

19.9976

49.9998

0.0399 301 −×

0.2347 301 −×

0.020 301 −×

Table 2. Effect of snapshots in Spatially smoothed

N

Percentage
Of

Successful
Iterations

DOA 
Estimation 

average

Variance
 of 

Angels

6 100
-40.0056
19,9924
49.9876

0.0011
0.0044
0.0012

8 100
-39.9906
20.0030
49.9998

0.9335 301 −×

0.6122 301 −×

0.3807 301 −×

16 100
-39.9984
20.0000
49.9994

0.1578 301 −×

0.0401 301 −×

0.0598 301 −×

Table 3. Effect of Number of Array Elements N in Spatially 
smoothed MUSIC

Space 
Element

Percentage
Of

Successful
Iterations

DOA 
Estimation

average

Variance
of

Aangels

2/λ 100
-40.0056
19,9924
49.9876

0.0011
0.0044
0.0012

4/λ 99.8
-40.0281
19.7846
49.8651

0.0974
0.1161
0.0164

8/λ 3.4

-44.3412

38.4529

53.1647

0.0876

1.8751

0.1687

Table 4. Effect of Element spacing in Spatially MUSIC

To evaluate the performance of MUSIC and Spatially 
Smoothed version, a three signal structure has been simulated. 
Two of them are coherent and one of them is incoherent. Delay 
time between these two coherent signals is more than a chip 
length. As depicted in figures 5 to 7, performance metric, 
i.e. relative power, depends on different parameters same as 
snapshot and SNR.

Tables 1 to 4 shows the effect of SNR, number of array 
elements, number of snapshots and element spacing for 
spatially smoothed MUSIC, respectively. Performance average 
of estimated DOA and variance of angel. Due to estimate of 
coherent signals, these simulation results are not reported here.

CONCLUSION

In this research, conventional MUSIC algorithm and spatially 
smoothed version have been simulated. Two and three users in 
exist of noise and fading. Moreover efficiency of algorithms in 
distinguish of signals, are evaluated. According to simulation 
results considering noise and multipath fading, MUSIC method 
cannot be used to distinguish correlated signals. DOA of signal 
sources can preferably be estimated via spatially smoothed 
version. Therefore subspace based algorithms like MUSIC, 
ML and ROOT-MUSIC are out of use. Spatial smoothing 
method must be used to remove the correlation between the 
incident signals by dividing the main sensor array in to forward/
backward overlapping sub-arrays and introducing phase shifts 
between these sub-arrays. It causes decrease of length of array, 
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and with calculation and sample mean of covariance matrix 
of each sub-array, estimation is being possible. The effects of 
various investigated parameters in spatial smoothing algorithm 
are shown. Some of important results of these results of this 
research are as follow:

 
1- MUSIC algorithm is not appropriate method in the case 

of two incoherent sources.
2- Increasing the number of sensors, number of snapshots, 

sub-arrays and signal to interference ratio is a reason to 
improving the performance of algorithms

3- Estimation of DOA in signal to interference ratio of 20 
dB without any error.

4- A good estimation of DOA in the case of fully coherent 
signals and considering fading will be achieved applying spatial 
smoothing algorithm.

5- Optimum distance between adjacent array’s elements is
2/λ .
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