
INTRODUCTION

It has been one quarter century since Utsu [1,2], Rikitake 
[3] and [4] proposed probabilistic approaches for predicting the 
magnitude of the next earthquake on a specific fault. Poisson 
distribution is commonly applied to estimate the occurrence 
of earthquakes in seismic hazard studies [5,7]. A number of 
probability distributions have been proposed and used for 
computation of conditional probability of future earthquake 
occurrences, including the double exponential, Gaussian, 
Weibull, Log-normal [8], Gamma [9], and Pareto distributions 
[10]. The difficulty lies in determining the suitable distribution 
given the available earthquake data for a certain active fault 
zone. Nishenko and Buland [1987] obtained a reasonably good 
fit to the data using a log-normal distribution. McNally and 
Minster [11] argued that the Weibull distribution would be more 
appropriate [22]. Past studies on seismicity and seismic hazard 
in Turkey includes the use of geostatistical methods without 
consideration of probability distribution functions and regional 
seismic hazard estimations [12]. 

It is necessary to make several assumptions and establish 
definitions in modeling of earthquake occurrences on a 
fault system. According to the Poisson model, earthquake 
occurrences have no memory and they occur independent 
of each other. The random variable is defined as either the 
magnitude of the earthquake in modeling and/or as inter-event 
time between two earthquake incidences in the continuous 
distributions [13]. A fault system usually creates earthquakes 
of many different magnitudes, not just one magnitude and 
inter-event time. The magnitude of the earthquake is the most 
important parameter used in the modeling studies. Although the 
devastation caused by the earthquake is directly related to the 
magnitude of the earthquake when it occurs near urban areas, 
site conditions and quality of the buildings are also important 
parameters. For example, while an earthquake of magnitude of 

over 7.5 causes no devastation in Japan, 20.000 people died in 
the earthquake occurred in 1999 in Turkey [14]. In countries 
where ‘sound’ building codes either do not exist or do exist 
but are not followed earthquakes with magnitude larger than 
5 can be devastating events. For this reason, earthquakes with 
magnitude equal to or larger than 5 are taken into consideration 
in this study. 

In this study, the set of data presented in Table 1 is used, 
which consists of earthquakes whose magnitudes are equal to or 
larger than 5 between the years 1900 and 2004 in the area within 
longitudes 40o 50’ – 41o 50’ N and latitudes 30o 00’ – 40o 00’ 
E [23]. This area (see Figure 1) includes the north Anatolian 
fault zone, which is the most active earthquake zone in Turkey. 
It is obvious from table 1 that the number of the earthquakes 
with magnitude of 5 or over is 63 during the last 101 years. On 
the other hand, it is worthy to notice that 3 earthquakes have 
magnitudes more than 7. The temporal magnitude randomness 
is obvious and therefore it is important to try and search the 
most suitable probability distribution model for prediction in 
this region. The objective of this study is to determine which 
probability distribution best fits the earthquake data considered. 
Four probability distributions are commonly used in the 
literature Poisson, Semi-Markov, Gumbel and Weibull. 

The comparisons are made by the help of Chi-Square, 
Kolmogorov-Smirnov and Anderson- Darling test statistics. 
For the parameter estimations of these distributions three 
estimation methods, namely, least squares, maximum likelihood 
and moment methods are considered. Earthquake prediction 
probabilities based on these three estimation methods have 
been calculated for different time periods. 
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Table 1 (Cont.) The earthquakes at the magnitude of 5 or over between the years 1900-2004 in the region between (40.50 - 41.50) north and (30.00 – 40.00) east coordinates
Date Time Latitude Longitude Depth (km) Magnitude

21.09.1957 20:16 40,75 34,02 40 5.1
23.06.1967 10:06 40,85 33,65 5.1
22.07.1967 16:56 40,67 30,69 6.0
22.07.1967 17:14 40,70 30,80 6 5.2
22.07.1967 18:09 40,72 30,51 35 5.1
30.07.1967 01:31 40,72 30,52 18 5.4
22.12.1969 04:47 40,60 34,20 33 5.1
05.10.1977 05:34 41,02 33,57 10 5.3
14.08.1996 01:55 40,75 35,30 12 5.3
14.08.1996 02:59 40,78 35,31 3 5.3
11.01.1997 06:42 40,55 35,25 10 6.0
13.09.1999 11:55 40,75 30,08 10,4 5.6
11.11.1999 14:41 40,75 30,25 7,5 5.4
12.11.1999 16:57 40,81 31,19 10,4 6.2
12.11.1999 17:17 40,75 31,08 27,8 5.2
12.11.1999 17:29 40,70 31,47 11 5.0
16.11.1999 17:51 40,73 31,59 5 5.0
14.02.2000 06:56 41,02 31,76 10 5.0
06.06.2000 02:41 40,69 32,99 10 6.1
23.08.2000 13:41 40,68 30,72 15 5.8
26.08.2001 00:41 40,95 31,57 7 5.4

22.10.1905 03:42 41,00 31,00 27 5.2
21.08.1907 40,70 30,10 15 5.5
21.06.1908 03:55 40,60 35,90 0 5.2
25.06.1910 19:26 41,00 34,00 0 6.2
09.08.1918 00:39 40,89 33,41 10 5.8
29.08.1918 06:39 40,58 35,16 10 5.3
09.06.1919 07:13 41,16 33,20 10 5.7
09.06.1919 15:47 40,68 33,89 10 5.0
29.05.1923 11:34 41,00 30,00 25 5.5
16.08.1923 03:52 41,02 34,41 40 5.2
24.01.1928 07:36 40,99 30,86 10 5.3
21.09.1936 11:41 41,21 33,53 20 5.1
18.11.1936 15:50 41,25 33,33 10 5.2
21.11.1942 14:01 40,82 34,44 80 5.5
02.12.1942 19:04 41,04 34,88 20 5.4
11.12.1942 02:39 40,76 34,83 40 6.1
20.12.1942 14:03 40,70 36,80 16 7.0
20.06.1943 15:32 40,85 30,51 10 6.5
20.06.1943 16:47 40,84 30,73 10 5.5
26.11.1943 22:20 41,05 33,72 10 7.2
07.12.1943 01:19 41,00 35,60 0 5.6
02.01.1944 10:59 41,00 33,70 0 5.0
01.02.1944 06:08 40,70 31,27 10 5.0
02.02.1944 03:33 40,74 31,44 40 5.1
10.02.1944 12:05 41,00 32,30 10 5.3
05.04.1944 04:40 40,84 31,12 10 5.5
30.09.1944 04:13 41,11 34,87 10 5.5
18.10.1944 12:54 40,89 33,47 10 5.2
02.03.1945 10:39 41,20 33,40 10 5.6
21.01.1946 11:25 41,05 33,48 60 5.0
19.12.1947 17:31 40,71 32,82 10 5.1
13.05.1949 20:14 40,74 32,71 20 5.1
13.08.1951 18:33 40,88 32,87 10 6.9
14.08.1951 18:46 41,08 33,18 40 5.1
07.09.1953 03:59 41,09 33,01 40 6.4
19.08.1954 21:03 41,21 36,41 30 5.0
06.01.1956 14:52 41,00 30,20 10 5.0
26.05.1957 06:33 40,67 31,00 10 7.1
26.05.1957 08:54 40,60 30,74 40 5.4
26.05.1957 09:36 40,76 30,81 10 5.9
27.05.1957 11:01 40,73 30,95 50 5.8
01.06.1957 05:26 40,75 30,86 50 5.0
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Figure1. The Area of investigation (NAF: 40.50 - 41.50 north and 
30.00 – 40.00 east)
[http://www.iris.iris.edu/volume2000no1/page-14-16.htm]

STATISTICAL ANALYSES

In determination of the distribution which fits the earthquake 
data best, the test statistics, summarized briefly below, have 
been used. The results of the test statistics used in determination 
of the effective distribution are given in Table 2. It is seen that 
the test statistics have minimum values for Weibull Distribution. 
For this reason, it has been concluded that the distribution that 
best represents the data set is the Weibull Distribution. In terms 
of compliance, Pearson VI, lognormal and log-logistic follow 
the Weibull distribution. 

Table 2 Goodness of fi t results

Distributions
Chi-Square
Value(df)

Kolmogorov 
Smirnov

Anderson 
Darling

Beta 16.5 (4) 0.2350 4.11
Erlang 28.4 (4) 0.3240 17
Exponential 28.4 (4) 0.3240 17
Gamma 1.43 (4) 0.0981 0.644
Log-Logistic 2.38 (4) 0.0821 0.53
Lognormal 1.06 (4) 0.0901 0.535
Pearson V 15.8 (4) 0.2120 3.42
Pearson VI 1.43 (4) 0.0821 0.386
Tringular 110 (4) 0.5970 67.8
Uniform 140 (4) 0.7070 101
Weibull 1.06 (4) 0.0697 0.277

In making predictions by probability distributions, the first 
step is the estimation of distribution parameters. The three 
methods mostly used in estimation of parameters are Least 
Squares Method (LSM), Maximum Likelihood Method (MLE) 
and Method of Moments (MOM)[15,16]. In this study, fitting 
of Weibull Distribution for calculation of earthquake prediction 
probabilities in the mentioned region is introduced and then 
the mathematical process in the estimation of MLE, LSM and 
MOM and as well as Weibull Distributions is explained. 

Weibull Distribution
Weibull Distribution with two parameters is given below 

[17]; 

t
1tf(t) e
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In the equation (1); t  is the time passing between the 
events, β is the shape parameter, and η  is the scale parameter. 
Weibull Cumulative Distribution Function is as follows;
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The expectation of the earthquake in period t is calculated 
with the expected value, as shown in equation (3). 
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MLE, LSM and MOM are the most common estimation 
methods that are used in order to estimate the shape and scale 
parameters of Weibull Distribution [18,19,20].

DISCUSSION 

Estimations of Weibull distribution parameters are obtained 
with the three methods mentioned above and the results are 
presented in Table 3. 

Table 3 Estimated values of shape and scale parameters of 
Weibull Distribution obtained using three different calculation 
methods 

Method
Parameters

β̂ η̂

Least Squares Method (LSM) 0.514 329.26
Maximum Likelihood Method (MLE) 0.507 335
Method of Moments (MOM) 0.765 785.066

When Table 3 is studied, it is seen that parameter estimations 
obtained by LSM and MLE methods are close to each other. 
Especially, , estimated using these two methods are close to 
each other but different from that obtained by MOM. 

The probabilities are calculated using equation (2) for 
magnitudes equal to or greater than 5 in the area of investigation. 
The substitution of parameters estimated by LSM, MLE and 
MOM into equation (2) leads to the following probability 
statements.

t[ ]0.514329.26F(t) 1 e
LSM

−
= −  (4)

t[ ]0.507335F(t) 1 e
MLE

−
= −  (5)

and

t[ ]0.765785.066F(t) 1 e
MOM

−
= −  (6)

Accordingly when ti= 100, 365, 730, 1825, 3650, 5475, 
7300 days are substituted in these equations then the probability 
results appear as in Table 4. 
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The probabilities of an earthquake occurrence with a 
magnitude of 5 or higher are 0.418, 0.418 and 0.187 according to 
LSM, MLE, MOM methods, respectively within 100 days after 
an earthquake of magnitude 5 or larger has already occurred. 
These probabilities successively increase to 0.652, 0.648 and 
0.427 in one year, to approximately 0.90 in 5 years and to 0.99 
in 20 years. It can be deduced from the results that there is a 
very high probability of occurrence of an earthquake with a 
magnitude of 5 or higher within 20 years after an earthquake 
with a magnitude of 5 or higher has already occurred in the 
area of investigation. If Table 4 is studied in terms of parameter 
estimation methods, MOM gives lowest probability in shorter 
time periods when compared with LSM and MLE. However, 
when the time period increases, it is seen that all the three 
estimation methods give similar results. In order to decide on a 
proper method to make a better estimation on shape and scale 
parameters, a simulation study was carried out with samplings 
composed of 10, 30, 50, 100 and 120 units. At the end of 
this simulation study on 250 comparisons, 122 comparisons 
revealed that MLE was the best estimation method, while 104 
of the 250 showed the LSM, and the other 24 of 250 showed 
the MOM as the best estimation method. It was observed that 
in the simulation studies with 10 units the MLE was the best 
estimation method while in studies with 30 and 50 units the 
MLE and LSM, in studies with 100 units the LSM, and in the 
simulation studies with 120 units the MLE performed best. In 
general, the MLE appeared to be the best estimation method 
[21]. For the size of the data set used in this study, it is seen 
that estimated values of the parameters obtained by using LSM 
and MLE methods are close each other, while those obtained 
with MOM show differences. If sampling set is large enough 
however, it is seen that the results obtained from the three 
methods are closer to each other.

The probability of an earthquake occurrence at a magnitude 
of 5 or higher for different time periods in the area of investigation 
is given in the following figure. It is seen in Fig. 2 that as 
the inter-event time increases, the probability of earthquake 
occurrence approaches to 1. For example, the probability of 
earthquake occurrence is 0.87 in 1400 days and 0.91 in 2000 
days. The prediction of an earthquake can be defined as the time, 
place and magnitude parameters of a possible future earthquake 
and the prediction of uncertainties depend on these parameters. 
Because of the divergences that earthquakes show in terms of 
time, place and magnitude, prediction of the seismic hazard 
with probabilistic methods provides the best results. Statistical 
approaches based on probability and random processes are the 
most appropriate methods to use in the analyses of seismic 
hazard due to the divergences seen in time and location of 
earthquakes. 
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Figure 2. The probability of earthquake occurrence of 
magnitude 5 or larger in the area of investigation

CONCLUSION

It is known that the probability of occurrence of earthquakes 
in seismic zones with a certain size and tectonic regime can 
be estimated using Weibull probability distribution. Hagiwara 
(1974) and Rikitake (1974) used Weibull distribution to estimate 
probability of earthquake occurrence. The basic feature of 
the Weibull distribution is the time between events. Only the 
occurrence probabilities of the magnitudes that are equal to 
or greater than Mmin (the smallest magnitude defined), can be 
computed with the Weibull distribution unlike other probability 
models (Gumbel, Poisson, Semi-Markov) used in earthquake 
probability analyses. Contrary to other approaches, the basic 
principle of the Weibull distribution is to take into consideration 
the distributions of the events in specific time intervals. 

In this paper, the authors attempted to find a probability 
distribution that best represents the set of earthquake data from 
Turkey. KS, AD and Chi-Square statistical tests have been used 
in determining that the most representative probability model 
is the Weibull distribution. Also, the time intervals between 
the successive earthquake events in days are considered for the 
probability calculations instead of classifying the set of data 
according to the years as in other general studies. Shape and 
scale parameter estimations regarding the Weibull distribution 
are obtained by using LSM, MLE and MOM methods; and the 
probability of earthquakes of magnitude 5 or higher is calculated 
for different time periods by these methods. The study is carried 
out for a region that includes the most active fault zone in Turkey, 

Table 4. Estimating the probability of occurrence with different prediction periods for the earthquakes at the magnitude of 5 or larger

Method Probability
Prediction period (days)

100 365 730 1825 3650 5475 7300
LSM p 0.418 0.652 0.778 0.910 0.968 0.986 0.993
MLE p 0.418 0.648 0.773 0.906 0.965 0.984 0.992
MOM p 0.187 0.427 0.612 0.851 0.961 0.988 0.996
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the north Anatolian fault. The probability of an earthquake 
with a magnitude of 5 or larger in the mentioned region is 0.96 
in 10 years; and the repetition period of an earthquake with 
a magnitude of 5 or higher is 651.8 days. The study area is 
the most densely populated region of Turkey in terms of both 
population and industry. In this region, investigation and control 
on compliance with building codes, new building construction 
directives, and building rehabilitation studies, which have been 
neglected until today, must be carried out and completed as 
soon as possible. 

The estimations in this study depend just on the magnitudes 
of the earthquakes with a specific magnitude. For that reason, 
the results found in this study should be assessed as statistical 
findings that emerge from the estimation of earthquake 
probabilities. Statistical results obtained in the study are 
intended to help promote preventive precautions to minimize 
losses due to earthquakes. In conclusion, this study aims to 
act as a preliminary work that would be a base for further 
interdisciplinary studies to be carried out that are necessary to 
mitigate earthquake risk in the region.

APPENDIX

Maximum Likelihood Method
Likelihood function for Weibull Distribution having two 

parameters is as follows;

n

i
i 1

L( , ) f (t ; )
=

η β = θ∏

t1n tL( , ) e
i 1

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

β− −⎛ ⎞β η βη β = ∏ ⎜ ⎟η η= ⎝ ⎠   
(7) 

If the natural logarithm of equation (7) is taken, the 
following formula is obtained;

n

i i
i 1

InL( , ) In In ( 1)Int t−β β
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η β = β −β η+ β − − η∑

n n

i i
i 1 i 1

InL( , ) nIn n In ( 1) Int t−β β
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The derivates of the likelihood function is taken according 
to the parameters and equaled to zero. 

n
1 ( 1)

i
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InL( , ) n t 0− − β+ β
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∂ η β
= − βη + βη =
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n
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∂ η β
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When η is eliminated in equation (9), equation (10) is 
obtained. 
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i
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Equation (10) can be numerically solved with Newton 
method and β̂ is obtained from here. Then β̂ obtained is used 
equation (11) and η̂ is estimated. 

1
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β
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Least Squares Method (LSM)
If we take the natural logarithm of the both sides of equation 

(2);

t

F(t) 1 e
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⎜ ⎟−
⎜ ⎟η β⎝ ⎠= −

tLn(1 F(t))
β⎛ ⎞

− − = ⎜ ⎟η⎝ ⎠

is obtained. When the natural logarithm is taken again; 

( ){ }Ln Ln 1 F(t) Lnt Ln
ax bY

− − = β −β η  (12)

is obtained. When Y = ( ){ }Ln Ln 1 F(t)− −  is defined with 
ax = âLnt and b = âLn; Y = ax+b; the Least Squares Method 
is obtained. 

By the help of the 
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definitions, β  and η are estimated with equations (15) and 
(16). 
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tˆ exp(Y )ˆη = −
β

 (16)

Method of Moments (MOM)
To estimate the parameters of two-parameter Weibull 

Distribution using the Method of Moments parameters, the first 
and second moments. The k. Moment of the Weibull Distribution 
having to parameters around zero is given equation (17). 

kk kE(t ) ( 1)= η Γ +
β

 (17)

The first moment around zero is obtained by writing k=1 
and k= 2 in equation (17) [21]. 

1E(t) ( 1)= η Γ +
β

 (18)
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2 2 2
Ε(τ ) = η Γ( +1)

β   
(19) 

When the square of the equation (18) is taken and divided 
equation (19), equation (20) only depended on β̂ parameter is 
obtained.

n
2

i
i 1

n
2
i

i 1

{ t }

n t

=

=

=
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∑
 

21{ ( 1)}

2( 1)

Γ +
β

Γ +
β   

(20) 

Equation (20) is solved by the help of the standard iterative 
methods and the β̂ parameter is obtained. η̂ parameter is found 
with equation (21) by substituting β̂ in equation (18). 

tˆ
1( 1)ˆ

η =
Γ +
β

 (21)

REFERENCES

[1]  Utsu T. 1972. Large earthquakes near Hokkaido and 
the expectancy of the occurrence of a large earthquake 
of Nemuro. Report of The Coordinating Committee for 
Earthquake Prediction. 7 : 7-13.

[2]  Utsu T.1972. After shocks and earthquake statistics (IV). 
Journal of the Faculty of Science, Hokkaido University 
Series VII Geophysics. l.4: 1-42. 

[3]  Rikitake T. 1974. Probability of an earthquake occurrence 
as estimated from crustal strain. Tectonophysics. 23: 299-
312.

[4]  Hagiwara Y.1974. Probability of earthquake occurrence 
as obtained from a Weibull Distribution analysis of crustal 
strain. Tectonophysics. 23: 323-318. 

[5]  Caputo M. 1974. Analysis of seismic risk: Engineering 
Seismology and Earthquake Engineering. NATO 
Advanced Study Institutes Series, Series E: Applied 
Sciences. 3: 55-86.

[6] Cluff L.S, Patwardham A, Copper-Smith K.1980. 
Estimating the probability of occurrence of surface 
faulting earthquakes on the Wasatch Fault Zone Utah. 
Bulletin of the Seismological Society of America. 70: 
463-478. 

[7]  Shah H, Movassate M. 1975. Seismic risk analysis of 
California State Water Project: Proc. of The 5 th European 
Conf. on Earthquake Engineering. 10/156, Istanbul. 

[8]  Nishenko, S. P, Buland R. A. 1987. Generic recurrence 
interval distribution for earthquake forecasting. Bulletin 
of the Seismological Society of America. 77: 1382-1399.

[9]  Utsu T. 1984. Estimation of parameters for recurrence 
models of earthquakes. Bulletin of the Earthquake 
Research Institute, University of Tokyo. 59: 53-66.

[10]  Sergio G. 2003. Probabilistic prediction of the next 
large earthquake in the Michoacán Fault-Segment of 

the Mexican Subduction Zone. Institute of Geophysics 
(UNAM), Ciudad Universitaria, Mexico City, Mexico 
Geofísica International. 42(1): 69-81.

[11]  McNally KC, Minster C.B. 1981. Non uni-form seismic 
slip rates along the Middle American Trench. Journal of 
Geophysical Research. . 86: 4949-4959.

[12]  Şen Z, Al-Suba’I K. 2001. Seismic hazard assessment 
in the Tihamat Asir region, southwestern Saudi Arabia. 
Mathematical Geology. . 33 (8): 967-990. 

[13]  Yılmaz V, Çelik H.E. 2004. The estimation of earthquake 
risk in Eskişehir, Turkey. Journal of Science and 
Technology, Anadolu University. 5(2): 279-283.

[14]  Yilmaz V. 2004. The statistical analyses of the 
psychological effects of the earthquake in the Marmara 
region of Turkey on 17 August 1999. Social Behavior and 
Personality. 32(6): 551-558. 

[15]  Härtler G. 1994. “Best linear unbiased estimation for the 
Weibull process. Microelectronics and Reliability. 34(7): 
1253-1260.

[16]  Qiao H, Tsokos C.P.1994. Parameter estimation of 
the Weibull probability distribution. Mathematics and 
Computers in Simulation. 37(1) :47-55. 

[17]  Weibull W. 1967. Estimation Of Distribution Parameters 
By A Combination Of The Best Linear Order Statistics 
Method And Maximum Likelihood. USAF Report, 
AFML-TR-67-105/ AF. 61(052):522. 

[18]  Chen Z.1997. Statistical inference about the shape 
parameter of the Weibull distribution. Statistics and 
Probability Letters. 36: 85-90.

[19]  Kappenman R.F.1985. Estimation for the three-
parameter Weibull, lognormal, and gamma distributions. 
Computational Statistics and Data Analysis. 3(1):11-23.

[20]  Mahdi S, Ashkarb F. 2004. Exploring generalized 
probability weighted moments, generalized moments 
and maximum likelihood estimating methods in two-
parameter Weibull model. Journal of Hydrology. .285: 
62–75.

[21]  Yılmaz V, Erisoglu M. 2003. The use of statistical 
parameter estimation methods in the calculation of the 
parameters Weibull distribution and the application 
of Weibull distribution to earthquake data. Journal of 
Statistical Research, Turkey. 2(2): 203-217.

[22]  Workshop on Earthquake Recurrence. 1999. State of the 
Art and Directions for the Future: Istituto Nazionale De 
Geofi sica. Rome, Italy. 22-25.

[23]  Data Bank of Seismology Department of General 
Directorate of Earthquakes and Disaster Affairs, Ankara, 
Turkey, 2004.


