
INTRODUCTION

Various faults may be experienced in production processes 
and these are generally attributable to errors of machines, 
materials, methods, and labor. Rapid detection of such faults, 
which are often called assignable causes of variation, is an 
important issue in quality control since they may significantly 
affect product quality characteristics. Nevertheless, detection of 
faults is generally not a simple task and requires application 
of statistical tools to discriminate inherent variation (noise) 
from the variation due to faults in the process. It is assumed 
that occurrence of faults would result in a pattern in the 
observations, where the observations are measurements of key 
product/process variables. Patterns due to presence of faults are 
called fault patterns (signatures) and these are generally in the 
form of mean changes of the observations. It is the noise in 
the observations that make the patterns hard to detect without 
statistical tools. 

Statistical Process Control (SPC) tools have been developed 
to cope with fault detection problems. In SPC, a process 
functioning under normal operating conditions is assumed to 
be in-control and a process functioning under the influence 
of a fault is assumed to be out-of-control. Control charts are 
the major SPC tools used for detection of faults. Generally, a 
probability distribution is used to model an in-control process 
and it is assumed that a fault in the process will shift a parameter 
of the distribution to some value different from the in-control 
value, i.e. a fault pattern. The shift in the distribution parameter 
is often considered in terms of a mean change and this is often 
a step change pattern. In fact, a step function may be used as a 
global model for many fault patterns.  Most of the traditional 
control charts, such as Shewhart, Cumulative Sum (CUSUM), 

and Exponentially Weighted Moving Average (EWMA) are 
affective in detecting such step type fault patterns in the mean. 
For details, interested readers are referred to [1-4]. 

In some practical cases, knowledge on the patterns of 
observations caused by a known fault may be available. 
Hereafter, I will call such known faults specific faults and 
their known patterns specific fault patterns. For example, 
measured surface texture of a metal sheet machined in a milling 
operation may have a sinusoidal fault pattern due to tool 
wear type fault. Specific fault patterns in the form of linear, 
exponential, or sinusoidal patterns and their combinations are 
common in production processes and these patterns should be 
identified and eliminated rapidly in order to improve the quality 
characteristics of the products. Such specific fault patterns are 
illustrated in Figure 1.

For a specific fault pattern, one may not need to use the 
traditional control charts designed for global fault patterns. By 
sensitizing a control chart to the specific fault pattern, presence of 
specific faults can be detected faster than the traditional control 
charts. One approach that facilitates knowledge of specific fault 
patterns for affective detection of specific faults is to use the 
concept of Fisher’s efficient score statistic. The cumulative 
score (Cuscore) chart of Box and Ramirez [5] is based on this 
statistic (see also [6]).  Cuscore charts sequentially accumulate 
the product of model residuals with an appropriate detector 
developed from the specific fault pattern. As the specific fault 
pattern appears, residuals will contain a component due to this 
pattern and that will resonate with the detector. However, note 
that the start time of a fault is unknown in practice and a control 
chart should have a mechanism to estimate the change time or 
the start time of the specific fault pattern. To solve this problem, 
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Luceno [7] suggested that a reinitialization of the Cuscore chart 
may be needed for some forms of fault patterns. This is used 
for updating the estimate of the start time of the fault pattern 
and hence preventing the Cuscore statistic from getting larger 
when the process is in-control.  Although Cuscore charts are 
computationally efficient, Runger and Testik [8] showed 
through simulations that initial and steady-state performances 
of these charts may differ significantly and reinitialization may 
make the detection performance much worse for some fault 
patterns.

As an alternative to Cuscore charts for detecting specific 
fault patterns, a control chart can also be developed using a 
generalized likelihood ratio (GLR) statistic. This approach is 
used in Runger and Testik [8]. GLR charts are based on the 
log-likelihood ratio statistic computed by using the maximum 
likelihood estimate of the fault pattern’s start time. Although, 
GLR charts are computationally intensive, their initial and 
steady-state performances are better than the Cuscore charts. 

It was mentioned that a specific fault detection method 
should have a mechanism to estimate the unknown start time 
of the fault pattern. One other important problem in detecting 
specific fault patterns is the variability of the patterns. A 
parameterized mathematical function is often used to model 
specific fault patterns. Parameters of this function would 
characterize the variations of the pattern. Although in some 
cases defining a specific fault pattern is possible with known 
parameters, in other cases, these parameters may be unknown or 
varying as considered in this research. For example, a sinusoidal 
pattern caused by a tool wear in a milling operation may be 

varying in amplitude as a result of differences in the hardness 
of machined parts. To estimate the unknown parameters of 
the pattern, some methods for parameter estimation would be 
necessary for the effective operation of a control chart. In the 
GLR chart of Runger and Testik [8], least squares estimators 
(which are also the maximum likelihood estimators in the case 
of a normal distribution characterizing the process) are used for 
this purpose. However, least squares criterion is computationally 
intensive for online parameter estimation. 

For specific fault patterns with unknown parameters, direct 
methods for updating estimates of unknown parameters are 
available. Direct smoothing is a recursive forecasting procedure, 
which can be used to predict unknown parameters of the specific 
fault pattern as new data are available.  This procedure uses 
the errors from the specific fault pattern’s forecasts to smooth 
the pattern parameter estimates. It is based on the discounted 
(weighted) least squares criterion, where decreasing weights by 
age are applied in the minimization of the sum of squares of the 
prediction errors [9]. 

In the following, direct smoothing procedure is proposed 
to be used as an on-line estimator for the parameters of 
specific fault patterns and how to incorporate this procedure 
into the GLR control charts is shown. Performances of GLR 
charts for detecting occurrences of specific fault patterns, 
which have known functional forms but unknown parameters, 
are studied by using both least squares and direct smoothing 
methods. Comparisons are provided. A robust study of the 
direct smoothing approach is also performed and the results are 
discussed.

Figure 1. Examples of Specific Fault Patterns As a Change in the Mean
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MATERIALS AND METHODS

Process Model

Consider a process with the quality characteristic Y  being 
monitored over time t. Suppose that under normal operating 
conditions, the model representing the sequential observations 

( )y t  is 

( ) ( ),  t=1,2,...y t a tµ= +

where µ  is the mean of Y, ( )a t is the normally distributed 
white-noise sequence with mean zero and variance 2σ . 
Without lose of generality, let 0µ =  for simplicity. Suppose 
further that this process is perturbed by a specific fault from 
time to time and let the mathematical function representing a 
specific fault pattern is known. For the specific fault pattern 
starting at an unknown time τ , let the sequential observations 
be represented by the model 

( ) ( , , ) ( )   for = + ≥y t f t a t tθ τ τ
where (.)f  is the function representing specific fault 

pattern, τ  is the pattern start time of the fault, and θ  is a 1 k×  
parameter vector corresponding to k  additive components of 
the function representing the specific fault pattern, such that 

1

( , , ) ( , ) ( , )   for 
=

= − ≥∑
k

i

f t t i z t i tθ τ θ τ τ

Here, ( , ),  1,...,t i i kθ =  is the parameter of the thi

component of the parameter vector θ  at time t  and 
( , ),  1,...,z t i i kτ− =  is the assessment of the thi  time 

dependent mathematical function of the specific fault pattern 
at time t , which starts at τ . For example, a fault pattern that 
has a trend component and an oscillatory component may be 
represented by

( ) ( )( , , ) ( ,1) ( , 2)( ) ( ,3)sin ( ) ( , 4)cos ( )= + − + − + −f t t t t t t t tθ τ θ θ τ θ ω τ θ ω τ

GLR Control Chart
An important concept in mathematical statistics is the log-

likelihood ratio

( , , ) ( (1),..., ( ))
( , ) ln

( (1),..., ( ))
+= f Tp y y T

l
p y y T

µ θ τ

µ

θ τ ���������������������������(1)

where,  p is the parameterized probability density and T
is the current time or the last observation sequence number. 
The key statistical property of the log-likelihood ratio is a sign 
change when the parameters of the probability densities given 
in equation  are different. Hence, this concept is used widely 
in change detection algorithms. GLR algorithm is based on the 
log-likelihood ratio, where the specific fault pattern’s start time 
τ  that maximizes the log likelihood ratio over the data history 
is used. Then the GLR statistic is 

( , , )

1

( ( ),..., ( ))
max ln

( ( ),..., ( ))
+

≤ ≤

f T

t T

p y t y T
p y t y T

µ θ τ

µ

Since the observations ( )y t  are independent, the GLR 
statistic at time T is

( , , )

1
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T f T t
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+
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For normal (gaussian) distributed observations ( )y t , the 
GLR statistic in equation  can be written as

1 1

1

1max ( , , ) ( ( ) ) ( , , ) ( , , )
2

− −

≤ ≤
= =

 
= − − 

 
∑ ∑

T T

T t T j t j t

g f j t y j f j t f j tθ σ µ θ σ θ .... 3

Using the GLR statistic in equation, a control chart for 
detecting a specific fault pattern can be constructed. This 
is achieved by determining a control limit CL and each time 
checking for Tg CL≥ , which triggers an alarm for the presence 
of the specific fault pattern being monitored.

 GLR algorithm is not recursive, which makes it computationally 
intensive. However, today’s personal computers allow it to be 
efficiently used in practical applications. Furthermore, a moving 
window with size w of observations can be used to decrease 
computational requirements. The GLR statistic using a moving 
window of observations with window size w is,

1 11max ( , , ) ( ( ) ) ( , , ) ( , , )
2

− −

− ≤ ≤
= =

 
= − − 

 
∑ ∑

T T

t T w t T j t j t

g f j t y j f j t f j tθ σ µ θ σ θ ....... 4

It is suggested that a window size of 30 is a good choice 
in change detection (see [8]). For further details of the GLR 
algorithm and sequential change point detection readers are 
also referred to Lai [10].

 If the parameter vector θ  is known, its value can be used 
in the specific fault pattern function (.)f of the GLR statistic 
given in equations  and . If the parameters are unknown, GLR 
is a function of τ  and θ , which are independent and should be 
doubly maximized. 

Figure 2 is a schematic of the GLR algorithm for the 
unknown parameters case, where ˆ  −

T
T wθ is the maximum 

likelihood estimate (MLE) calculated from the data in the 
interval [T-w,T].  Note that the algorithm first maximizes the 

likelihood of estimates for θ  for each of the possible start 
times τ  in the data window and the log likelihood ratios 
are calculated for each of these possible τ  values using the 

corresponding MLEs of the θ . Then the second maximization 
is for the MLE of the τ , which is the maximum of the log 
likelihood ratios in the window.

Figure 2. Representation of the GLR algorithm for unknown 
parameters case

Note that as the size of the window [t ,T ] t=w,…,T  used in 
the MLE calculations of the parameters gets smaller, parameter 
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estimates may become poor, especially when the noise is 
high. Furthermore, GLR algorithm becomes computationally 
intensive due to these maximizations.

In order to improve the parameter estimates, use of a lower 
bound ∫θ  for the estimates is suggested and it is shown that 
GLR performance for unknown parameters case did not differ 
considerably from the known parameters case [8]. Known 
parameters case for a specific fault pattern can be used as a 
control setting for comparing estimation methods for unknown 
parameters cases. 

It is also important not to assume that θ  would assume a 
constant value over time. The values for the θ  may be varying 
over time due to various factors such as dependence on the 
process state variables, operator-to-operator differences, etc. 
For example, a machine operated by different operators or 
differences in the tool wear for the same type of machines may 
result in varying parameters. Therefore, a constant value for θ  
over a data interval may not be a good way to represent the time 
behavior of a pattern. 

In the following, a computationally efficient forecasting 
procedure, namely direct smoothing, is described and 
incorporated into the GLR statistic calculations. This is 
suggested as an alternative to the MLE procedure, which 
demands further computations. When the θ  of the fault pattern 
is unknown or varying, one can replace ( , , )f t θ τ  in equation  
or  with the predictions ˆ( , , )f t θ τ  obtained using the direct 
smoothing procedure and let the GLR algorithm estimate the 
start time τ  of the fault pattern that maximizes the likelihood 

function over all possible time values t. 

Direct Smoothing (DS) Estimation 
A brief overview of the direct smoothing method is given 

in the following. Interested readers are referred to [9,11-13] 
for details and examples. Consider the least squares estimation 

criterion using the observations at 1,...,t T= ,

( )2
1

ˆ( , , )
=

= −∑
T

t
t

SSE y f t θ τ

where SSE stands for the sum of squared of errors. For 
convenience, let y be a 1T ×  column vector of the successive 
values of the observations 

ty  for 1,...,t T= , ˆ
Τθ  be a 1k ×

column vector of parameter estimates computed using the 
observations at 1,...,t T= , Z be a T k×  matrix of the 
values of the components ( )tz i  of the function representing 
specific fault pattern where 1,...,  t T= and  i=1,...,k . It is 
well known that the least squares estimates of the parameters 
that minimize SSE are the solutions to the least squares normal 
equations

ˆ'  'Z Z Z= yΤθ

and the estimates are 
1ˆ ( ' ) 'Z Z Z−= yΤθ

However, note that the GLR algorithm employs the least 
squares estimates computed from the data points including each 
possible specific fault start time t up to the current data point T. 
When T τ<  the expected value of the estimates θ̂  is 

ˆΕ( ) = 0θ

In other words, the estimated function ˆ( , , )f t τθ  
representing the specific fault pattern is expected to be zero 
when the pattern is not present in the data. Moreover, when the 
pattern occurs at time τ , the observations before the pattern 
start time τ will cause some bias in the parameter estimates 
for the possible change times t τ< . Because each observation 
gets equal weights in the least squares procedure, number of 
data points required to decrease this bias in the estimates will 
be a linear function of tτ −  for tτ > . Alternatively this bias 
may be reduced if we assign weights to the observations that 
decrease by the age of the observations, hence utilizing the 
recent observations more than the distant past observations. 

Least squares parameter estimation criterion can be modified 
by assigning weights to the errors in the SSE calculations such 
that  

( )22

1

ˆ( , , )
T

t t
t

SSE y f tω τ
=

= −∑ θ

where tω  is the square root of the weight given to the tht
error. This parameter estimation criterion, which minimizes 
the weighted SSE is called the weighted least squares. Let 
the weights be discounted exponentially as we go back away 
from the current time T  so that older observations receive 
proportionally less weight, i.e.

2
 ,   t=0,...,T-1t

T tω β− =

where β  is the discount factor chosen to be 0 1β< < . 
Then the special case of the weighted least squares criterion 
with the exponentially discounted weights is called the 
discounted least squares criterion. The discounted least squares 
normal equations

ˆ
T TC c=Τθ ......................................................................(5)

can be solved to obtain the discounted least squares 
estimates of the parameters such that

1ˆ  ,      T TC c−=Τθ ...................................................................(6)

if 1
TC −  exist. Here ( ) ( )TC WZ WZ′= , W  is a T T×  

diagonal matrix of the weights with the tht  diagonal element 

tω  and 2'Tc Z W= y . 
Note that the result of discounted weighting is a window 

of observations contributing considerably to the parameter 
estimation. For example, if 0.8β = , the weight given to the 
data point 30Ty −  

is approximately 0.001, indicating that 
this observation is almost not considered in the parameter 
estimation.  

For some special cases of functions representing specific 
fault patterns, the discounted least squares estimates of 
parameters can be calculated recursively. This recursive 
parameter update method is called direct smoothing and it has 
computational advantages. In the following, direct smoothing is 
briefly described without giving the theoretical details.

Assume that the function components ( )tz i  have the 
following time dependencies,
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k1,...,i   ),(...)2()1()( 211 =+++=+ kzzziz tiktitit 

that is the value of a 1( )tz i+  is a linear combination of all 
components evaluated at time t . Let L  be a k k×  matrix of 
linear combination coefficients ,  i=1...k, j=1...ki j . Then we 
can write 

1  t tL+ =z z ...................................................................(7)

Note that, given the matrix L  and 0z , one may calculate 
1t+z by

1 0
t

t L+ =z z

Therefore, L  is named the transition matrix. Equation  
holds only for mathematical functions ( )tz i  that are 
polynomial, exponential, or trigonometric. As a matter of 

15

Figure 3. Flow Chart for the GLR Control Chart with Direct Smoothing. 
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Figure 3. Flow Chart for the GLR Control Chart with Direct Smoothing.
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fact, these mathematical functions and their combinations can 
represent a large number of signals.  Let the matrix TC  be 

∑
=

− ′=
T

tT
TC

1t
tt zzβ

If ( )tz i do not decay too rapidly, there exists a limit such 
that

TT
CC  lim

∞→
≡

C  exists for all trigonometric and polynomial functions 
of ( )tz i , and for ( ) t

tz i e α−=  where 2e αβ −< . Using these 
results and after some algebra, the direct smoothing recursive 
parameter update equation is

1 1 1
ˆ ˆ ˆ' ( ' )T T T T TL s y− + −= + − zθ θ θ

where TCs z1−=  is called the smoothing vector [11-12]. 

Consequently, the one-step-ahead specific fault pattern 
predictions can be calculated by

1
ˆ ˆ( 1, , ) T Tf T ++ τ = z'θ θ

The discount factor has the relation 1/* kβ β=  where *β
is an appropriate discount factor for a constant process. For 
example, smoothing of a linear trend model with 0.9β =  is 
equivalent to smoothing of a constant model with * 0.81β = .

A flow chart for implementing DS-GLR control charts is 
shown in Figure 3 [also in 9]. In order to apply the DS, some 
initial values are needed. Since the common procedure in 
statistical process control is to assume that the process is in-
control when it restarts, it is reasonable to use 

0̂ ( ) 0   i=1,...,kiθ =  
and ˆ(1, , ) 0f θ τ = . Storing the DS estimates of the signal 

ˆ( , , )f T θ τ  along with the corresponding data points of the 
sliding window, one can easily implement the GLR control 
chart for the unknown signal parameters case. It should be 
noted that rather than estimating unknown parameter w times 
with the availability of a new data point, only one parameter is 
estimated. This would reduce the computational requirements 
for large window sizes. 

RESULTS

Analysis of GLR Performance with DS Estimation
For evaluating the performance of the control charts, the 

average run-length (ARL) criterion is used. First, a run-length 

(RL) can be defined as the number of time units until an alarm 
is triggered and consequently the ARL is the expected value 
of the run length. Because there is always a probability that a 
control chart will trigger a false alarm when the signal is not 
present in the data, ARL can be classified further into two:ARL0 
ARL0 is the expected time between the false alarms and ARL1 
is the expected delay for triggering an alarm when there is an 
assignable cause. For equal ARL0values, a control chart with 
a smaller ARL1 has a better performance over the one with a 
longer ARL1. Nevertheless, there is always a trade-off between 
a longer ARL0 and a shorter ARL1. 

Two different specific fault pattern functions are considered 
in the simulations: A linear trend with a slope of θ=0.1 and a 
sine wave with a periodicity of 2/)5.0( π−t  and an amplitude 
of θ=1.

For the linear trend function,

0                     for 
( , , )

( )        for 
t

f t
t t

τ
θ τ

θ τ τ
< 

=  × − ≥ 

the following values are used in DS calculations,

0.9β = , 1
0
 

=  
 

0z ,  1 0
1 0

L  
=  
 

, 10 90
90 1710

C
− 

=  − 
, 

0.1900
0.0100

s  
=  
 

, 0ˆ
0
 

=  
 

0θ , and ˆ(1, , ) 0f θ τ =

For the sine wave function,

1 2

0                                                                               for 
( , , )

sin ( 0.5) sin cos     for 
2 2 2

t
f t t tt t

τ
θ τ π π πθ τ θ θ τ

< 
 =       − − = + ≥             ,

where 

1 2cos ( 0.5)  and sin ( 0.5)
2 2
π πθ θ τ θ θ τ   = − − = − −   
   

,

the following values are used in DS calculations,

0.9β = , 

sin(0)
cos(0)
 

=  
 

0z
, 

cos sin
2 2

sin cos
2 2

L

π π

π π

    
        =

    −    
     , 

4.74 0
0 5.26

C  
=  
 

,

Table 1. GLR Charts’ Performance for a Linear Trend with slope 0.1. 

Known 
Parameters

Unknown Parameters
(MLE)

Unknown Parameters 

( 0.05∫θ = )

Unknown Parameters
(DS) 

Pattern starts at h= 3.05 h= 5.2 h= 4.5 h=2.45

ARL(0) 300.38
(4.10)

294.55
(4.11)

306.75
(4.30)

306.58 
(4.18)

ARL(1) 0=τ
11.94
(0.04)

13.24 
(0.05)

12.21 
(0.05)

12.69 
(0.04)

ARL(1) 50τ =
11.40
(0.05)

13.03 
(0.05)

11.98 
(0.05)

12.60 
(0.05)
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0.0000
0.1900

s  
=  
 

, 0ˆ
0
 

=  
 

0θ ,  and ˆ(1, , ) 0f θ τ =

Interested readers are referred to [11] for the details of the 
computations of the above-mentioned values. 

The in-control observations are independent and identically 
distributed normal with mean 0=µ  and variance 12 =σ . 
Signals were started at 0=τ  and 50τ = . Simulating a control 
chart with a signal starting at 0=τ  is used for the initial 
performance evaluation and a signal starting at 50τ =  is used 
for steady-state performance evaluation. 

As suggested in Runger and Testik [8] a window size of 30 
was used for the GLR control charts. Both of the cases mentioned 
earlier in text, known signal form but unknown parameter case 
and known signal form but varying parameter cases were 
studied. Simulations were performed using MATLAB  6.1 and 
5000 replications were done for each of the cases. The results 
are shown in Tables 1 and 2. Standard errors of the results are 
given in parenthesis.  

The linear trend results are given in Table 1. It can be seen 
that for equal (approximately) ARL0 performances, ARL1 

performances with DS estimation are in between the ones of 
MLE estimates with a lower bound and the MLE estimates 
without a lower bound. As expected, the best performance is 
achieved when the true pattern parameters are known, which I 
provided as the control case.

From Table 2 for the sine wave results, DS estimation is 
better than both the MLE estimates and the MLE estimates 
with a lower bound. Note that one other advantage of the DS 
approach is the decrease in computational requirements.

Robustness of the GLR 
Because the parameters of a signal may be time varying in 

practice, parameter estimation algorithms should be adaptive. 
To investigate the GLR charts and the parameter estimation 
algorithms further, a robustness study was conducted. In this 
section, I show the robustness of the direct smoothing parameter 
estimation algorithm in estimation of time-varying parameters. 
In the simulations, I generated a parameter value at each time t 
when the fault pattern was present. This robustness study was 
conducted by generating the specific fault pattern’s parameters 
randomly from a probability distribution at each time t. Two 
probability distributions were used, a uniform distribution and 
a truncated normal distribution. For the linear trend cases, the 
distributions of the parameters are θ~ Uniform (0.05, 0.15) and 

Table 2. GLR Charts’ Performance for a sin[ 2/)5.0( π−t ].

Known 
Parameters

Unknown 
Parameters

(MLE)

Unknown 
Parameters 
( 0.5θ ∫ = )

Unknown 
Parameters

(DS) 

Pattern starts at h= 4.5 h= 5.8 h= 5.4 h=2.4

ARL(0) 323.83
(4.52)

311.90
(4.32)

322.14
(4.50)

338.76 
(4.55)

ARL(1) 0=τ
18.56
(0.15)

20.35 
(0.20)

19.74 
(0.18)

18.89 
(0.14)

ARL(1) 50τ =
17.06
(0.16)

19.08 
(0.18)

18.34 
(0.18)

17.77 
(0.14)

Table 3. Robustness of GLR Charts with DS and for a Linear Trend Type Pattern

h=2.45 Pattern starts at
Constant 

Parameters
θ = 0.1

Uniform 
Distribution

Truncated Normal 
Distribution

ARL(0) 306.58 
(4.18)

306.58 
(4.18)

306.58 
(4.18)

ARL(1) 0=τ
12.69 
(0.04)

12.75 
(0.04)

12.87 
(0.04)

ARL(1) 50τ =
12.60 
(0.05)

12.56 
(0.05)

12.54
(0.05)

Table 4. Robustness of GLR Charts with DS and for a Sine Wave Type Pattern

h=2.4 Pattern starts 
at

Constant Parameters
θ = 0.1 Uniform Distribution Truncated Normal 

Distribution

ARL(0) 338.76 
(4.55)

338.76 
(4.55)

338.76 
(4.55)

ARL(1) 0=τ
18.89 
(0.14)

19.69 
(0.14)

18.79 
(0.14)

ARL(1) 50τ =
17.77 
(0.14)

18.06 
(0.15)

18.09 
(0.15)
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θ~ Doubly Truncated Normal (0.1, 0.00625) where truncations 
are at 0.05 and 0.15. For the sine wave cases, the distributions 
of the parameters are θ~ Uniform (0.5, 1.5) and θ~ Doubly 
Truncated Normal (1, 0.0625) where truncations are at 0.5 and 
1.5. Note that the means of the distributions are at 0.1 for the 
linear trend cases and at 1.0 for the sine wave cases. In Tables 3 
and 4, the results are provided. The standard errors of the ARLs 
are given in parenthesis.

In Tables 3 and 4, it can be seen that DS approach is robust 
in the sense that randomness in the parameter values do not 
affect the ARL1 performances much (from comparisons of 
the ARL1 performances for the constant parameter case with 
the uniform and truncated normal distribution cases). This 
property is important since changes in parameter values may 
be encountered in practice due to many factors and a control 
chart, which is not affected much in such circumstances, is 
preferable.

CONCLUSIONS

Fault detection is an important problem in quality control 
since occurrence of faults may significantly affect product 
quality characteristics. In order to detect occurrence of faults, 
statistical process control methods such as control charts can be 
utilized. In this research, I assumed that some knowledge on a 
fault and its affect on the quality characteristic were available 
from previous experience. Affect of faults on the quality 
characteristic is also considered to be in the form of a change in 
the mean of the monitored quality characteristics. For detection 
of such faults, I used a generalized likelihood ratio control 
chart but utilized the direct smoothing method for estimating 
the parameters of the fault’s pattern. 

Through simulations of a linear trend and a sine wave type 
fault patterns, it is shown that performances of these charts can 
be improved. Another advantage of the proposed approach is the 
reduction in the computational requirements; direct smoothing 
method is computationally less demanding. 

In practice, parameters of a signal may be time varying. 
Parameter estimation algorithms that are adaptive might be 
useful. To investigate the GLR charts and the direct smoothing 
algorithm (which is adaptive) under the time varying parameter 
case, a robustness study was conducted. Simulations of the 
direct smoothing approach indicate that it is also robust when 
the parameters vary over time. 

REFERENCES

[1]	 Shewhart WA. 1925. The application of statistics as an aid 
in maintaining quality of a manufactured product. Journal 
of the American Statistical Association.  20: 546-548. 

[2]	 Page ES. 1954. Continuous inspection schemes. 
Biometrika.  41: 100-115.

[3]	 Roberts SW. 1959. Control chart tests based on geometric 
moving averages. Technometrics. 1: 239-250.

[4]	 Montgomery DC. 2001. Introduction to Statistical Quality 
Control, 4th ed. John Wiley and Sons, New York, NY.

[5]	 Box GEP, Ramirez J. 1992. Cumulative score charts. 
Quality and Reliability Engineering International. 8: 17-
27.

[6]	 Box GEP, Luceno A. 1997.  Statistical Control by 
Monitoring and Feedback Adjustment.  Wiley, New York, 
NY.

[7]	 Luceno A. 1999. Average run lengths and run length 
probability distributions for Cuscore charts to control 
normal mean. Computational Statistics and Data Analysis. 
32: 177-195.

[8]	 Runger GC, Testik MC. 2003. Control charts for 
monitoring fault signatures: Cuscore versus GLR. Quality 
and Reliability Engineering International. 19: 387-396.

[9]	 Testik MC. 2003. Univariate and Multivariate Statistical 
Process Control: A Generalized Likelihood Ratio 
Approach. Unpublished Ph.D. Dissertation (Arizona 
State University).

[10]	 Lai TL. 1995. Sequential change point detection in 
quality control and dynamical systems. Journal of the 
Royal Statistical Society B. 57: 613-658.

[11]	 Montgomery DC, Johnson LA, Gardiner JS. 1990. 
Forecasting and TimeSeries Analysis. McGraw-Hill Inc., 
New York, NY. 

[12]	 Brown RG. 1963. Smoothing Forecasting and Prediction 
of Discrete Time Series. Prentice-Hall Inc., Englewood 
Cliffs, NJ.

[13]	 Testik MC. 2004. Application of the direct smoothing 
method to generalized likelihood ratio control charts. 
Proceedings of the Operations Research and 
Industrial Engineering XXIV. National Congress, 
354-356. ( in Turkish)


