
INTRODUCTION 
Approximately 154 billion cubic meters of soil is annually 

removed from Turkey by water erosion [1]. In this sense, soil 
and water loss is one of major problem in Turkey [2,1]. It has 
been recognized that soil loss from agriculture land is in itself a 
serious economic loss. Transported sediment by water erosion 
is subsequently deposited in stream channels, lakes, reservoir, 
and harbors, requiring costly remedial measures. 

Sedimentation has a major impact on the useful life and 
economic viability of many reservoirs by causing a reduction 
in the storage capacity. Also with deposition at the head 
of reservoir, it can cause an increase in flood levels in the 
contributing rivers upstream. Therefore, it is important for 
the engineer to make an assessment of the likely quantity of 
sediment deposits throughout the design life of a reservoir. 
The useful life may be computed by determining the total time 
required to fill the critical storage volume. In addition, sediment 
transport to the lakes, reservoirs and rivers may adversely affect 
the aquatic life.

The annual sediment load of a stream is an important factor 
for determining dead storage volume of a dam. The annual 
sediment load of the stream is generally determined either from 
direct measurements of the sediment load throughout the year 
or from any of the many sediment transport equations that are 
available today. Direct measurement of the sediment load in a 
stream, which is the most reliable method, is very expensive 
and thus is not done for as many streams as the measurement 
of water discharge. On the other hand most of the sediment 
transport equations require detailed information on the flow 
and sediment characteristics and generally do not agree with 
each other making it difficult to choose the best equation 

for a given stream. Because of these problems researchers 
are always looking for simpler and easy to use relationships 
between sediment load and water discharge or drainage area of 
the stream [3].

Runoff and sediment load information can provide insights 
into catchment degradation especially in relation to identifying 
critical erosion source areas. As catchments remain in a dynamic 
state, the runoff and sediment load fluctuate over time. If 
sufficiently long time series data are available it may be possible, 
to some extent, to identify the reliable maximum and minimum 
values and the underlying distribution. However generally such 
long time series data, particularly for small catchments, are not 
available. It is, therefore, necessary to deploy some means to 
simulate sufficiently long time series data with similar statistical 
characteristics as that of the historical data.

Due to a lack of long-term sediment concentration data, 
stochastic time series models of sediment yield (t/yr) have 
not been attempted as widely as runoff records. Rice [4]  and 
Hadley et al. [5]  have strongly advocated the need for adopting 
stochastic approach for modeling sediment yield. Gurnell and 
Fend [6]  turned autocorrelation to an advantage by estimating a 
Box-Jenkins transfer function between discharge and suspended 
sediment concentration series. Univariate autoregressive 
integrated moving average (ARIMA) stochastic time series 
models of discharge and suspended sediment concentration 
series were developed for an estimation period, and the simple 
transfer function used to bring them into phase and apply 
a scaling factor. The present study is an attempt to apply the 
ARIMA (Box-Jenkins) model in simulating sediment load data 
of the Yesilirmak Basin.
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MATERIAL AND METHOD

Study area
Monthly sediment data from four sampling stations 

(numbered 1401, 1413, 1418 and 1422), which are managed 
by General Directorate of Electric Power Research Survey and 
Development Administration (EIE), in the Yesilirmak Basin, 
were used as the input data for this study. The approximate 
locations of the sediment-sampling stations are given in Figure 
1 and a summary of identification number and names and 
drainage areas for the sediment-sampling stations are presented 
in Table 1.

Table 1. Sediment-sampling stations identification in 
Yesilirmak Basin

Station 
Number Station Name

Drainage 
Area,
km2

Number 
of Years of 

Data
1401 Kelkit-Fatli 10048.8 20
1413 Yesilırmak-Durucasu 21667.2 20
1418 Yesilırmak-Gomeleonu 1608.0 14
1422 Kelkit-Cicek Buku 1714.0 15

Yesilirmak Basin is bounded between a latitude 39º 30’ 
and 41º 21’ N and 34º 40’ and 39º 48’ E longitude. It covers 
approximately 3 873 280 ha, equivalent to about 5% of 
Turkey’s total area. Land use categories equate to around 39 % 
forest, 39 % cropland and 19 % pasture in the basin. Yesilirmak 
Basin is located on the north Anatolia fault line that is one 
of the most effective faults in the world. This basin has been 
subjected to phases of major tectonic activity (Hercynian, and 
Alpine Orogeny) as well as epiorogenic movements. Therefore, 
bedrock is extensively faulted and folded. Major lithologies 
include sandstone, claystone, andesite, volcanic bressica and 
tuffs. The headwaters of the Yesilirmak River and most of its 

tributaries originate in the mountains that form the eastern 
and southern boundaries of the study area reaching elevation 
of 2800 m. The major tributaries to the Yesilirmak River are 
Kelkit, Cekerek, Corum Cat and Tersakan Streams. The length 
of the main river channel is about 519 km [7]. 

Time Series Analysis for Monthly Sediment Data
In order to analyze the monthly time series from the four 

sediment-sampling stations, a linear stochastic model, known 
as either Box-Jenkins or ARIMA, was used in this study. The 
seasonal ARIMA model [8] can be written as:

Ø(B)Φ(Bs)(wi – μ) = θ(B)Θ(B
s)ai.....................................(1)

wi = (1-B)
d (1-Bs)D xi..........................................................(2)

In equation 1, wi should be taken as zi if the series is 
stationary. 

Box and Jenkins [9] recommended that model development 
consists of three stages (identification, estimation and diagnostic 
check) when an ARIMA model is applied to a particular 
problem. The identification stage is purposed to determine the 
differencing required to produce stationarity and also the order 
of both the seasonal and nonseasonal  autoregressive (AR) and 
moving avarage (MA) operators for a given series. By plotting 
original series (monthly series), seasonality, trends in the mean 
and variance may be revealed. The non-parametric Spearman’s 
Rho test can be applied to decide whether trend exists in the 
monthly data [10]: 
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Figure 1. Sediment-sampling sites within Yesilirmak Basin
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To determine whether there is a trend, the tcal value in 
equation 5 should be compared to the t-table critical value. If 
the tcal value lies within the 5% significance interval, there is no 
trend for the data set.

Autocorrelation function (ACF) and partial autocorrelation 
function (PACF) should be used to gather information about the 
seasonal and nonseasonal AR and MA operators for the monthly 
series [11]. ACF measures the amount of linear dependence 
between observations in a time series. In general, for a MA 
(0,d,q) process, autocorrelation coefficient (rk) with the order 
of k cuts off and is not significantly different from zero after 
lag q. If rk tails off and does not truncate, this suggests that an 
AR term is needed to model the time series. When the process 
is a MA (0,d,q)x(0,D,Q), rk truncates and is not significantly 
different from zero after lag q+sQ. If rk attenuates at lags that 
are multiples of s, this implies the presence of a seasonal AR 
component. For an AR (p, d, 0) process, partial autocorrelation 
coefficient (økk) with the order of k truncates and is not 
significantly different from zero after lag p. If økk tails off and 
this implies that a MA term is required. When the process is 
an AR (0, d, q) x (0, D, Q), økk cut off and is not significantly 
different from zero after lag p+sP. If økk damps out at lags that 
are multiples of s, this suggests the incorporation of a seasonal 
MA component into the model. The ACF for seasonal series 
should not exceed a maximum lag of approximately 5s (5s < 
n/4). PACF are usually calculated for 20 to about 40 lags (40 
< n/4). For seasonal models, higher lags of the PACF may be 
required for identification.

Estimation stage consists of using the data to estimate and 
to make inferences about values of the parameters conditional 
on the tentatively identified model. In an ARIMA model, the 
residuals (ai) are assumed to be independent, homoscedastic, 
and usually normally distributed. However, if the constant 
variance and normality assumptions are not true, they are often 
reasonably well satisfied when the observations are transformed 
by a Box-Cox transformation. The transformations can be 
expressed as either of the following equations [12]:
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Box and Jenkins [9] cited that the model should be 
parsimonious. Therefore, they recommended the need to use 
as few model parameters as possible so that the model fulfils 
all the diagnostic checks. Akaike [13] suggests a mathematical 
formulation of the parsimony criterion of model building as AIC 
(Akaike Information Criterion) for the purpose of selecting an 
optimal model fit to a given data. Mathematical formulation of 
AIC is defined as:    

AIC (M) = n lnσa
2 + 2M����������������������������������������������������(8)

Where M is the number of AR and MA parameters to 
estimate. The model that gives the minimum AIC is selected as 
a parsimonious model.

Shibata [14] has shown that the AIC criterion tends to 
overestimate the order of the autoregression. Akaike [15,16] 
developed a Bayesian extension of minimum AIC procedure, 
termed BIC. Similar to Akaike’s BIC, Schwarz [17] suggested 
the Schwarz Bayesian Criterion (SBC):

SBC (M) = n lnσa
2 + M lnn�����������������������������������������������(9)

Diagnostic checks determine whether residuals are 
independent, homoscedastic and normally distributed. The 
residual autocorrelation function (RACF) should be obtained 
to determine whether residual are white noise. There are two 
useful applications related to RACF for examining residuals. 
The first one is the periodogram drawn by plotting rk (a) against 
lag k. If some of the RACF are significantly different from zero, 
this may mean that the present model is inadequate. The second 
one is Q (r) statistic suggested by Ljung-Box [18]. A test of this 
hypothesis can be done for the model adequacy by choosing a 
level of significance and then comparing the value of calculated 
χ2 to χ2-table of critical value. If the calculated χ2 value is smaller 
than the χ2-table critical value, the present model is adequate on 
the basis of available data. The Q (r) statistic is calculated by 
using:
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The following test described by Breusch and Pagan [19] is 
very useful to determine whether a transformation of the data 
is needed. If there is a change in variance (heteroscedasticity) 
of residuals, a transformation is necessary for the data. For the 
test, the residuals from the model fit to the data are divided 
into two groups. Then, residual sum of squares (ESSF, ESSS) 
for these group are obtained. Breusch-Pagan test statistic 
(Fcal) is obtained from the following equation. If Fcal is smaller 
than F-table critical value, the residuals are assumed to be 
homoscedastic.
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There are many standard tests available to check whether 
the residuals are normally distributed. Chow et al. [20] cited 
that if historical data are normally distributed, the graph of 
the cumulative distribution for these data should appear as a 
straight line when plotted on normal probability paper. Haan 
[21] expressed that the other way to check normality of residuals 
is the Kolmogorov-Smirnov method.

RESULTS AND DISCUSSION

To determine whether there is a trend in monthly data 
sequences from four sediment-sampling stations, the non-
parametric test (Spearman’s Rho test) at 5% significance level 
was applied to monthly series. The Spearman’s Rho test results 
are given in Table 2. The tcal value (-1.52) of data from sampling 
station 1422 is between t-table critical values (±1.96) at 5% 
significance level. This suggests that there is not a linear trend 
in this data sequence. However, the tcal values of other stations 
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(1401, 1413 and 1418) were not between t-table critical values 
(±1.96) at a 5% significance level, suggest these stations have 
linear trends (Table 2). 

The plots of the monthly data sequences reveal important 
information about the sediment data. The periodic peaks in the 
data reflect the seasonality of the observations. These plots for 
the sediment data of the sampling stations 1401, 1413 and 1418 
also show that there is a linear component present. The plots of 
the ACFs drawn for the data sequences are examined in order to 
identify the form of the ARIMA model to estimate. The ACFs 
for monthly data follow an attenuating sine wave pattern that 
reflects the random periodicity of the data and possibly indicates 
the need for non-seasonal and/or seasonal AR terms in the 
model. For these type of series, the cyclic seasonal component 
was removed by taking the seasonal differencing operator as 
one (1). Similarly, for the data from sediment-sampling stations 
1401, 1413 and 1418, the non-seasonal differencing operator 
was taken as one (1) to remove trend from the data set.

ACFs and PACFs were estimated for the monthly data. All the 
ACFs were significantly different from zero. Additional to this, 
Ljung-Box Q statistics were estimated. They emphasis that the 
ACFs obtained from the monthly data sequences are significantly 
different from zero; in other words, there was a linear dependence 
between monthly observations. However, the ACFs did not 
cut off but rather damp out. This may suggest the presence of 
autoregressive (AR) terms. The PACFs possess significant values 
at some lags but rather tail off. This may imply the presence of 
moving average (MA) terms. The ACFs have significant values 
at lags that are multiples of 12. This may stress that seasonal AR 
terms are required but these values attenuate. There are peaks on 
graphs of the PACFs at lags that are multiples of 12 may suggest 
seasonal MA terms, but these peaks damp out.

Based on these conclusions, alternative ARIMA models 
were estimated by considering the ACFs and PACFs graphs 
from the monthly data. The SBC was taken into account for 
obtaining a parsimonious model among these alternatives. 

Table 2. The ARIMA models selected for the transformed data from the sediment sampling stations

Sampling 
Station

ARIMA
Model

Model Statistics
Trend AIC SBC Q (r)/p K-S B-P(Fcal) σa

2

1401 (0,1,1)(1,1,1) -3.59 752.5 762.8 0.852 0.486 0.865 1.43
1413 (1,1,1)(0,1,1) -3.85 721.7 732.0 0.414 0.662 0.797 1.22
1418 (0,1,1)(1,1,1) -5.07 542.5 551.7 0.234 0.556 0.859 1.66
1422 (0,0,0)(0,1,1) -1.52 527.7 530.8 0.721 0.379 1.130 1.22

AIC, Akaike Information Criterion
SBC, Schwarz Bayesian Criterion
Q (r)/p, Probability of Ljung-Box Q Statistic
K-S, Kolmogorov-Smirnov Statistic
B-P(Fcal), Breusch-Pagan Test statistic

Figure 2. Residual ACF-suspended sediment data
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The model that has the minimum SBC was assumed to be 
parsimonious. In addition to this, model parameters were 
analyzed at a 5% significance level by using t-tests to select the 
best model fit to the data. If there is any parameter greater than 
5%, they were eliminated.

Diagnostic checks were applied in order to determine 
whether the residuals of the selected models from the ACF and 
PACF graphs were independent, homoscedastic and normally 
distributed. All the identified possible models using original 
monthly data for the sediment-sampling stations failed the 
diagnostic checks. Therefore, a Box-Cox transformation was 
required for original monthly sediment data of each station. By 
substituting λ and c = 0.0, as zero (0.0) for monthly data from all 
sediment-sampling stations in equations (6) and (7), a Box-Cox 
causes the residuals to be homoscedastic and approximately 
normally distributed.

The models that have the minimum SBC among the selected 
models fulfilled all the diagnostic checks were selected as the best 
model for monthly data from the sediment-sampling stations. 
The selected best models are presented in Table 2.  The critical 
assumption of independence for the RACFs of the residuals 
was done by using the χ2 distributed Ljung-Box Q statistic. 
The probabilities of Q statistics calculated for the best models 
were given in Table 2. Calculating the Ljung-Box Q statistic on 
the RACF, indicated that the residuals were not significantly 
different from a white noise series at 5% significance level. 
Inspection of the RACF and the residual integrated periodogram 
(Figure 2) confirmed a strong model fit. 

In Table 2, test results from Kolmogorov-Simirnov method 
for the normality and test results from Breusch-Pagan for 

homoscedascity of the residuals are also presented. Table 2 
shows that all the diagnostic checks for the residuals from each 
data set are completely fulfilled.

The value (V) of the parameters associated the standard errors 
(SEV), t-ratios and probabilities (<5%) for the standard errors 
were listed in Table 3. The standard errors calculated for the 
model parameters were rather small compared to the parameter 
values. Therefore, all of the parameters are significant and these 
parameters should be included in the models (Table 3).

Table 3. Statistical analysis for the model parameters

Sampling 
Station

Model
Parameters

Variables in the Model

V SEV t-ratio Probability

1401
θ1 0.913 0.029 30.97 0.000
Φ1 -0.176 0.075 -2.34 0.020
Θ1 0.877 0.064 13.71 0.000

1413
Ø1 0.259 0.068 3.80 0.000
θ1 0.950 0.031 30.56 0.000
Θ1 0.935 0.099 9.48 0.000

1418
θ1 0.812 0.048 16.81 0.000
Φ1 -0.220 0.090 -2.43 0.016
Θ1 0.835 0.088 9.54 0.000

1422 Θ1 0.857 0.075 11.50 0.000

Figure 3 shows the relationship between ten-years of 
monthly data observed at each sediment-sampling station and 
predicted data for the same years by using the selected best 
model for each sediment-sampling station. As shown in Figure 
3, the predicted data follows the observed data very closely.

Figure 3. Comparison of observed and predicted data.
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Table 4 shows some basic statistical properties of the 
observed and predicted data. Using t-test for the means and F-
test for the variances to determine whether there is significant 
difference, the mean and variance values of the observed 
and predicted data for each sediment-sampling station were 
tested. The hypothesis that the mean and variance values of 
the generated data are not significantly different from those of 
the observed data can be accepted at 5 % significance level. 
Thus, the results show that generated data preserve the basic 
statistical properties of the observed series.  

Table 4. Comparison of original data to synthetic data

Sampling 
Station Mean tcal<ttable

Standard 
Deviation Fcal<Ftable 

1401Obs. 5.702
1.280<1.645

1.457
0.73<1.37

1401Pred. 5.549 1.254

1413Obs. 6.074
-1.405<1.645

1.270
0.71<1.37

1413Pred. 6.219 0.900

1418Obs. 4.478
-0.138<1.645

1.584
0.83<1.52

1418Pred. 4.501 1.310

1422Obs. 4.447
-0.903<1.645

1.261
0.72<1.46

1422Pred. 4.555 0.911

CONCLUSIONS

In this study we presented a stochastic modeling method to 
simulate monthly-suspended sediment data. Monthly sediment 
data from four sampling stations in the Yesilirmak Basin were 
used for simulation purposes. The results from this study 
showed that the predicted series obtained from the model (Box-
Jenkins ARIMA) preserve the basic statistical properties of the 
observed series. Therefore, this model proved to be a valuable 
tool to forecast the monthly-suspended sediment data from the 
Yesilirmak Basin, Turkey.

Nomenclature
ai	 : white noise time series value at time i
B	 : backward shift operator
c	 : constant for Box-Cox transformation
d	 : order of the nonseasonal differencing operator
D	 : order of the seasonal differencing operator
ESSF	 : the residual sum of square for first group
ESSS	 : the residual sum of square for second group
Kxi	 : rank of ith observation in the historical data
Kyi 	 : �rank in the historical data of ith observation in the 

ascended data
LBQ/P	 : probability for Q(r)
M	 : the number of AR and MA parameters
n	 : the number of observation
nF	 : the number of residuals in the first group
nS	 : the number of residuals in the second group
s	 : seasonal length

Q(r)	 : Ljung-Box statistic at lag m
rk(a)	 : ACF of ai at lag k
Rsp	 : rank order correlation coefficient
xi	 : discrete time series value at time i
wi	 : stationary series formed by differencing the xi

zi	 : transformation of xi series

Greek Symbols
λ	 : exponent for Box-Cox transformation
µ	 : mean level of the wi series (if D+d>0 often µ ≈0)
Øi	 : ith nonseasonal AR parameter
Φi	 : ith seasonal AR parameter
θi	 : ith nonseasonal MA parameter
Θi	 : ith seasonal MA parameter
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