
*Corresponding Author
e-mail: Hamedeshirzad@gmail.com                                                                                                                                            

Novel Radar Signal with Chaotic Behaviour for Better Decide on the Presence 
of Targets

Hamed SHIRZAD*  Somaieyh ASIABAN Majid FAKHERI  Sasan AHDI 
Islamic Azad University, Urmia Branch, Faculty of Engineering, Department of Electrical Engineering, Urmia, IRAN

Abstract
This paper is a preliminary investigation of a class of radar signals generated by recursively defined functions. Signals are of fundamental 

importance in radar, since a radar system uses transmitted and returned signals from the environment to decide on the presence of targets, as well as 
their range and speed. The issue of an appropriate choice of signal is complex, and application dependent. This paper is a brief simulation of a new 
class of signals based chaos theory. Such signals may be of importance in radar for a number of reasons. The first is that they are generated from 
a deterministic map, but can be made to appear as noise. This would be useful from an electronic protection point of view. Secondly, since these 
signals can be generated from a single dynamical system, with different control parameters and initial conditions, it may be possible to reduce the 
need for a comprehensive library of signals in a radar system. The generation of such signals, as a discrete time dynamical system, will be outlined. 
We investigate the stability of such signals, using the Lyapunov spectrum.  The radar ambiguity function is used to decide whether this signal is 
practical use in radar.
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INTRODUCTION

This paper is a preliminary investigation of a class of radar 
signals generated by recursively defined functions. Signals are 
of fundamental importance in radar, since a radar system uses 
transmitted and returned signals from the environment to decide 
on the presence of targets, as well as their range, bearing and 
speed. The issue of an appropriate choice of signal is complex, 
and application dependent. There are many types of signals, 
including linear frequency modulation (LFM), pseudorandom 
codes, step frequency continuous waves, step frequency pulse 
trains, single frequency pulse trains and random noise. This 
paper is a brief examination of a new generation and new class 
of signals, known as chaotic signals. Such signals may be of 
importance in radar for a number of reasons. The first is that 
they are generated from a deterministic map, but can be made 
to appear as noise. This would be useful from an electronic 
protection point of view. Secondly, since these signals can 
be generated from a single dynamical system, with different 
control parameters and initial conditions, it may be possible 
to reduce the need for a comprehensive library of signals in 
a radar system. The generation of such signals, as a discrete 
time dynamical system (DDS), will be outlined. We investigate 
the stability of such signals, using the Lyapunov spectrum.
The purpose of this paper is to consider a class of recursively 
defined signals that exhibit complex dynamics in phase space. 
This work arose out of an interesting radar signal in [1]. This 
signal exhibits sensitive dependence on initial conditions, and 
has an unusual self replicating feature in phase space. The main 
issue to be addressed in this paper is whether such signals are of 
practical use in radar. Signals are of paramount importance in 
radar. Radar systems use different types of signals for specific 

applications in varying situational contexts [2]. There are 
hence many different classes of radar signals. [2] Describes 
four classes of radar signals, based upon their characteristics 
and ambiguity functions. Linear frequency modulation, single 
frequency pulse trains, step frequency continuous waves, step 
frequency pulse trains, pseudorandom codes and random noise 
are examples pointed out in [1]. A relatively new class of signals 
are those which have chaotic dynamics [1, 3, 4]. Such a class of 
signals exhibits a phenomenon known as sensitive dependence 
on initial conditions. These signals may be useful in radar in the 
way code division multiple access (CDMA) is useful in digital 
telephony [4]. The advantage of CDMA is that the transmitted 
signal appears as noise to all but the intended recipient. It is 
possible that chaotic signals could be used to mask the signal 
within environmental noise and interference, so that targets may 
not be aware of the presence of scanning radar. Hence these 
signals may be of use as an electronic protection measure for 
the radar platform. Chaos theory investigates strange behavior 
found in nonlinear deterministic dynamical systems. Such 
unusual behavior in dynamical systems was first discovered 
by Poincare, who was attempting to show rigorously that the 
solar system, as modeled by Newton’s Laws of Motion, is 
dynamically stable [5]. He discovered that small differences 
in initial conditions can produce drastically different final 
solutions. Another early important study of dynamical systems 
exhibiting strange behavior is [6], who developed a system 
of coupled nonlinear differential equations to model weather 
patterns, and also observed this strange sensitivity to initial 
conditions. Lorenz coined the phrase “the butterfly effect” to 
illustrate this sensitivity. The latter implies a butterfly flapping 
its wings in one part of the world can have an effect on the 
weather in another distant part of the world [6,7]. The term 
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chaos first appeared in a dynamical systems context in [8].A 
chaotic dynamical system is a nonlinear dynamical system 
whose output has sensitive dependence on initial conditions. 
Chaos theory is the analysis of the behavior of such systems 
[3,7]. As such, chaos theory is not really a theory of chaos, but 
is more concerned with understanding the complex behavior 
of nonlinear dynamical systems. We will introduce briefly the 
study of such systems, and in particular, will be interested in 
determining under what conditions such a system becomes 
chaotic. A class of radar signals will be introduced .We will 
investigate one signal in this class, and apply the ambiguity 
function to see whether they are of practical use in radar [7].

RADAR SIGNALS AND DYNAMICAL 
SYSTEMS

Let  be the class of all real-valued radar signals, including 
both those defined on a discrete and continuous time domain. 
In order to motivate the work to follow, we consider a subclass 
of  that can be defined through a dynamical system. Assume 

, is continuous and differentiable within a domain. 
From a physical point of view, the derivative of this signal,  

, is the rate of change of it in a propagating medium. 
We may hence analysis the signal via this rate of change, so 
assume that . In addition to this, we 
may assume that in some cases,  can be expressed as a 
nonlinear composition of the signal  Thus, there may exist 
a function  such that  Hence, equivalently, 

 To show this class of signals is nonempty, 
consider the signal  for  
Its derivative is 
. Choose , Then  
on D. Hence, we can define the class of signals 

. As in [9], we can consider discretised time, since 
signals are often digitized so they can be processed 
by digital computers. Hence we can further restrict 
attention to the subclass  defined by the set

. The 
function  defined in the set  will be referred to as a generator 
of a signal. We specialize the discussion to one dimensional 
discrete maps, since we will be exclusively studying signals 
from the class  A dynamical system is a physical system 
which is described by a deterministic set of rules that change 
with time. Suppose the variables  describe 
the states of the system at each discrete time point . Then we 
assume there is a generator function , defined on the range of 

 such that:

                                                                                          (1)

The generator  in (Eq.1) determines the evolution of the 
system, and in general will be nonlinear. We refer to the system’s 
state space as the space  where the functions  take values. 
In the context of the discrete signals considered here, the state 
space will be subsets of the real line. As an example, the well-
known Logistic Map has generator  and 
the corresponding map, defined through (1) has initial value

. We will show that this map becomes unstable 
as λ changes, using its Lyapunov spectrum. It is not difficult to 
write down the general solution to (Eq.1). Let  be the 

 composition of with itself. By a simple recursion, it is 
not difficult to show that is the solution to (Eq.1). 

                                                                                          (2) 

The path in the state space that a dynamical system, defined 
through (Eq.2),  traces out is called its trajectory or orbit. A 
dissipative dynamical system is characterized by convergence 
of trajectories in its state space. An attractor is defined to be 
a set of points to which all neighboring trajectories converge 
in phase space. The attractor set consists of all limit points of 
the discrete map defined by (Eq.1). A point attractor is a single 
point to which trajectories converge, also known as a stable 
fixed point. A dynamical system may have a set of points which 
are visited periodically. Such points are referred to as a stable 
limit cycle, with periodic orbits. An attractor is also an invariant 
set, meaning that when a trajectory starts in it, it remains in the 
set forever. The largest subset of an attractor set, consisting of 
the largest set of points to which all nearby orbits converge, is 
called the basin of attraction. In a nonlinear dynamical system, 
where orbits in an attractor move apart with increasing time, the 
system is said to possess a strange attractor. Such dynamical 
systems are referred to as being chaotic. Chaos is often defined 
to be the periodic long run behavior in a deterministic dynamical 
system that exhibits sensitive dependence on initial conditions. 
There are three so-called signatures of chaos:

a) Aperiodicity in limiting behavior, meaning that the 
system does not converge to a single point as discrete time 
increases without bound;

b) It is a deterministic system, with no stochastic 
component, but is nonlinear;

c) The system exhibits sensitive dependence on initial 
conditions, meaning arbitrarily close trajectories will diverge 
apart exponentially fast.

LYAPUNOV SPECTRUM

Lyapunov exponents of a dynamical system provide a 
quantitative measure of its sensitivity to initial conditions. 
The Lyapunov spectrum of a map is a plot of its Lyapunov 
exponents. As pointed out in [9], they give the average rate of 
convergence or divergence of the system along the principal 
axes in phase space. The existence of at least one positive 
Lyapunov exponent is a necessary condition for a dynamical 
system to be chaotic [10]. Hence, given a dynamical system, 
if we can establish that there is at least one positive Lyapunov 
exponent, then we can be certain the system will exhibit chaotic 
dynamics. For a dynamical system, such as that generated by 
(Eq.1), where we know the generator  it has been shown that 
the complete Lyapunov spectrum can be easily computed [11]. 
This can be done by considering the perturbation of a point of 
the system, and applying a linear stability analysis [8].We focus 
on the calculation of Lyapunov exponents in the current context 
of one-dimensional discrete maps. The ideas to follow can be 
found in [12, 13]. Consider the dynamical system (Eq.1), with 
initial condition   further details can be found in [12]. It 
is clear from (Eq.3) that  depends on the starting point 

For a given attractor,  is invariant in the basin of attraction 
[15]. Simulation tests of a small perturbation of this starting 
point, defined by  where the initial separation 

 is assumed to be very small. Suppose  is the separation 
after n iterations of the system. If | , then 

 is called a Lyapunov exponent. These can be found, for a 
trajectory starting at  from the limit

                                                                        (3)
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If a Lyapunov exponent is negative for a particular orbit, 
then the orbit either has a stable fixed point, or a stable limit 
cycle. In the case where it is positive, the orbit is in a strange 
attractor, and the trajectory will be chaotic. Fig.1 is a plot of the 
Lyapunov spectrum for the Logistic map introduced previously, 
with  . As can be observed, the map has stable 
dynamics until at approximately , where it becomes 
chaotic, followed by periods of stability and then chaos. In the 
current context of radar signals in the class , we can calculate 
the Lyapunov spectrum, and use it to decide which parameter 
values generate a chaotic signal.

RADAR AMBIGUITY FUNCTION

An important tool in the design and evaluation of radar 
signals is the radar ambiguity function [2, 7, 14, 15, 16]. As 
pointed out in [15], it represents the time response of a signal 
filter matched to a specified signal of finite energy, when the 
signal is received with a time delay and a Doppler shift  
relative to the nominal values expected by the filter. We denote 
this function as  There are number of variations in 
the definition taken for . We base ours closely on that 
in [15,16]. For a discretised complex-valued signal  of 
length , the ambiguity function is defined to be:

                                                         (4)
Where the star denotes complex conjugate [1] contains a 

detailed discussion of the desirable features of radar ambiguity 
functions. The following discussion is based closely on this 
source. One perspective in the radar community is that an ideal 
radar signal is one which produces an ambiguity function that 
is a spike at the origin, and zero everywhere else. The reason 
for this is that it can be shown in order to optimally detect a 
target, it is necessary to maximize . Additionally, in 
order to minimize the probability of false detections of targets, 
it is necessary to minimize  with 
. As pointed out in [16],[17], the ambiguity function was not 
introduced to radar signal analysis via the matched filter, but 
as a normed difference between a signal and a copy of it that 
differs in time delay and Doppler shift [14]. To illustrate this, 
suppose we have a discrete radar signal  which we assume 

is a member of the Hilbert space of complex valued signals 
of finite energy, discrete time modulo , with inner product 

 The norm induced by 
this inner product is  We can consider 
the return from a radar signal  as a time delay and Doppler 
shifted version of the original, and so define an operator 

 By applying properties 
of inner products, it can be shown that :

                     (5)
Where  is the real part of a complex number Expression 

(Eq.5) is the squared normed difference between the original 
signal x and its time delayed and Doppler shifted version

.
To be able to differentiate between the two signals, we 

require the normed difference (Eq.5) to be maximized, except in 
the case where . In the latter case, the two signals 
are the same. Note that , which is the signal energy, is 
constant for a given signal. Hence, to maximize (Eq.5), we 
need to minimize   This can be achieved if we 
minimize the absolute value of the ambiguity function (Eq.4). 
Hence, in order to optimally differentiate a signal from its 
time delay and Doppler shifted version, we need an ambiguity 
function that is like a “thumbtack”, namely a spike at the origin 
and almost zero everywhere else. It is, however, impossible to 
produce a radar signal with such an ambiguity function. The 
main reason for this is that it can be shown that the volume 
under  is a non-zero constant, whose square is the 
energy in the transmitted signal, and cannot be confined to a 
single spike at the origin. If the absolute value of the ambiguity 
function has a large volume located near the origin, producing 
a wide peak, then the ability of the radar to resolve targets will 
be limited in that region. False detections may occur if there are 
large spikes in the ambiguity function’s absolute value away 
from the origin. This may also cause the masking of secondary 
targets. Fig. 2 and 3 are plots of the absolute value of ambiguity 
functions of two standard radar signals. The plots in Fig. 2 are 
for a standard single frequency pulse, while that for Fig.3 are for 
a standard linear FM pulse [15,16,17 for more details]. In each 
Figure, two subplots are used. The first one shows the ambiguity 
function as a colored contour map, with colors illustrating the 

Figure 1. A plot of the Lyapunov spectrum for the logistic map 
 with 

Figure 2. Ambiguity function plots for a single frequency pulse. The 
delay unit  is seconds, the Doppler unit  is radians and the absolute value 
of the ambiguity function scale is linear. The pulse duration is 1 second.
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magnitude of the function at each time delay  and Doppler 
level  The second plot shows the ambiguity function as a 
surface in space. Both signals have pulse duration of 1 second. 
The plots of Fig.2 show that the ambiguity function has a large 
ridge along the axis . As pointed out in [2], this means 
that the corresponding signal will provide high resolution in 
Doppler shift, but not in time delay.

One signal design feature that can be deduced from the 
ambiguity function plot of Fig.2 is that a shorter pulse will 
provide better range resolution than a longer one. The ambiguity 
function plots in Fig.3 show a large ridge at an angle to the  and 

axes. It is pointed out in [2] that the signals corresponding to 
such ambiguity functions will have some difficulty in resolving 
targets. Specifically, it is possible the signal will resolve all 
targets well, except those with a Doppler and time delay product 
which matches the angle of the ridge. We will use the ambiguity 
function in the following section, to decide whether our produce 
member of the class  would be of potential applicability in a 
radar context.

NEW RADAR WAVEFORM

The chaotic signal is that with generator 
As for the first, we show 

its sensitivity to initial conditions. Fig.4 is a plot of the evolutions 
of two orbits of this signal, with one slighly perturbed, and 
corresponding pointwise differences of two evolutions of (Eq. 2). 
The first begins with  , while the second is perturbed 
by , so that it evolves from 
. In both cases we choose . As can be observed from 
Fig.4, the two corresponding trajectories evolve together for 
a very short period, then diverge apart. Next we examine the 
Lyapunov spectrum for  
signal. Fig.5 is the Lyapunov spectrum, with  ranging from 

 to . We have chosen the initial value , for 
each , and  as before. The spectrum shows this 
signal becomes increasingly more chaotic as  increases. There 
is a very significant upward trend in Fig.5, and initial periods 
where there is stability. Fig.6 is a plot of the signal, as a function 
of . In this case,  varies from  to , in steps of . 
The initial condition is , for each , and  
iterations have been used to produce each value.

Fig.4. Differences of two signals generated with 
, with a perturbation of 

in initial starting values. The top plot is of the original signal, 
the second is a slightly perturbed version, while the third is of the 
corresponding pointwise differences.

Fig.5. The Lyapunov spectrum for the signal with generator 
.

Fig.6. A plot of the result of 10,000 iterations of the signal with generator 
as a function of .

Fig.7. A magnification of the plot of Fig.6, with  in the range from 
 to , in steps of 0.0001. The plot shows the generation of two 

new conical structures, indicating the transition from chaos to order. 
The first occurs at approximately , while the second is at 
roughly .

 

 

 

Figure 3. Ambiguity function plots for a linear FM pulse, with the same 
scale units as for Fig.2, including a linear scale for the absolute value of 
the ambiguity function. As for the example in Fig.2, the pulse duration 
is 1 second.[17]
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Fig.10. A plot similar to that of Fig.11, except for the signal of 
. As before, the first plot shows the 

absolute value of the ambiguity function as a surface, while the second 
is a color-coded contour plot. The ambiguity function is also in a linear 
scale, as previously.[17]

Fig.11. Ambiguity function plots for the signal with generator 
, except the plots are over larger time 

delay and Doppler shift intervals. The top plot is of the absolute value of 
the ambiguity function, again as a surface, while the second plot shows 
the contours and corresponding ambiguity function values using a color 
bar. The ambiguity function is in a linear scale.[17]

Fig.8. Ambiguity function plots for the signal with generator 
, as a function of .

Fig.9. Ambiguity function and autocorrelation plots of the signal with 
generator  [17]

The plot shows some very unusual behavior. The Lyapunov 
spectrum over this range of λ shows the signal is chaotic, with 
short periods of stability. A close examination of Fig.6 shows 
that these periods of stability bifurcate to chaos in a conical 
structure. Near   is a clear illustration of this. There 
is a short period where the signal has become stable, then 
bifurcates into a cone preceding chaos. What is not so clear 
from the plot, but can be found on magnification, is that there 
are many of these cone-like transitions. One small one can be 
seen roughly after the significant cone, near , becomes 
chaotic. At around  another can be observed. Fig.7 
is a magnification of the plot in Fig.6, over the region where 

. Increasing the number of iterations used, for 
each , improves the resolution of these plots and shows these 
transitions more clearly. 

Fig.8 is a complementary plot of those in Fig.9, for this 
second signal under investigation. In this case we take 
. As for the plots in Fig.9, we see that the absolute value of the 
ambiguity function is very similar to that of the first example. 
There is a difference in the contours as can be seen by comparing 
both second plots in Fig.9 and Fig.8. As before, this signal is a 
member of the class of irregular/noise like signals. Its utility 
is exactly the same as that of the ,[17]. 
Fig.10 is a complementary plot of that in Fig.11, showing the 
absolute value of the ambiguity function on a larger time delay 
and Doppler shift grid.

As in the ambiguity and autocorrelation plots in Fig.9 the 
first two subplots of Fig.8 are color-contour illustrations of the 
size of the absolute value of the ambiguity function in  
space and the third plot is a surface plot, while the fourth plot 
is of the normalized autocorrelation function. The ambiguity 
function is in a linear scale.

We describe the plots in Fig.9, from the top down. The 
first plot shows the absolute value of the ambiguity function’s 
concentration in terms of a color spectrum. The second 
plot shows a colored contour version of the first. The third 
plot shows the absolute value of the ambiguity function as a 
surface in space. Finally, the fourth plot shows the normalized 
autocorrelation function. Since the corresponding signal is in 
discrete time, the time delay  axis values are in discrete time 
units. Better graphical resolution is achieved by extending this 
axis (see Fig.11). The Doppler axis is in units of radians, while 
the time delay is measured in seconds. The absolute value of the 
ambiguity function is in a linear scale. The autocorrelation plot 
is shown over a larger spectrum of values of  than used in the 
previous three subplots, and also is in a linear scale.

CONCLUSIONS

This note introduced a class of recursively defined signals, 
motivated from [8]. Their stability was analyzed using a 
Lyapunov spectrum. These signals are members of a class of 
irregular/noise like signals described in [2],[17]. Based upon the 
shape of the absolute value of their ambiguity functions, we can 
conclude that they should have an ability to resolve targets in 
both time delay and Doppler shift. The disadvantage of such 
signals is that they have relatively high range and Doppler side 
lobes in the ambiguity diagram, which will limit their ability to 
discriminate small targets against clutter, and small targets in 
the vicinity of larger targets.



6060
H. Shirzad et al / IJNES, 5 (2): 55-60, 2011

REFERENCES

[1] Haykin, S. and Li, X. B. , Detection of Signals in Chaos. 
IEEE Proc. 83, 95-122.,1995.

[2]  Sobhy, M. I. and Shehata, A. R. , Chaotic Radar Systems. 
Microwave Symp. Digest, IEEE MTT-S 3, 1701-1704, 
2000.

[3]  Strogatz, S. , Nonlinear Dynamics and Chaos. Addison-
Wesley, Massachusetts-1994.

[4]  IEEE Series on Digital & Mobile Communication, Wiley-
IEEE Press, 2001.

[5]  Williams, G. P. , Chaos Theory Tamed, Taylor and Francis 
J., London,1997.

[6]  Morie, T.; Sakabayashi, S.; Nagata, M.; Iwata, A.; 
Nonlinear dynamical systems utilizing pulse modulation 
signals and a CMOS chip generating arbitrary chaos 
;IEEE Radar Conf.,p254-260,1999.

[7] Pourahmadazar, J., Shirzad H., Ghobadi CH., Nourinia 
J. – “Improve RADAR Waveform Metrics Using Lorenz 
Based method” IREE J pp291-303,vol,10, JAN-FEB, 
2010.

[8]  Lin, F-Y. and Liu, J-M. , Diverse Waveform Generation 
Using Semiconductor Lasers for Radar and Microwave 
Applications. IEEE J. Quantum Elect. 40, 682-689,2004

[9]  Haykin, S. and Puthusserypady, S. , Chaotic Dynamics of 
Sea Clutter. (Wiley, New York),1999.

[10]  Ringer, M. A., Frazer, G. J. and Anderson, S. J. , 
Waveform Analysis of Transmitters of Opportunity for 
Passive Radar. DSTO—TR—0809, 1999.

[11]  Kuru, L.; Kuru, E.; Yalcin, M.A.; An application of chaos 
and bifurcation in nonlinear dynamical power systems 
;IEEE Inteligent systems Conf.,vol.3,pp11-15,2005

[12]  Wolf, A. , Quantifying chaos with Lyapunov Exponents. 
(in Chaos, A. V. Holden Ed., Princeton University Press, 
Princeton, New Jersey,1986.

[13]  Wu, X., Liu, W., Zhao, L. and Fu, J. (2001), Chaotic Phase 
Code for Radar Pulse Compression. Proceed. IEEE Radar 
Conf. 2001, 279-283.

[14]  Venkatasubramanian, V.; Leung, H.; Xiaoxiang Liu; 
Chaos UWB Radar for Through-the-Wall Imaging ;  IEEE 
Transactions on  Image Processing, 18,6, pp 1255-1265, 
2009. 

[15]  Venkatasubramanian, V.; Leung, H.; A robust chaos radar 
for collision detection and vehicular ranging in intelligent 
transportation systems ,IEEE Radar Conf.,page,548-552, 
2005.

[16]  Levanon, N. and Mozeson, E. , Radar Signals. (Wiley, 
New York), 2004.

[17]  T. Sedghi , M. Fakheri, H. Shirzad, J. Pourahmadazar; 
“New Generation of Radar Waveforms Based Chaos 
Theory With Loss Detection to Targets”, IREE .J, Vol. 5 
N. 4, AUG, 2010.


