

Internatıonal Journal of Natural and Engineering Sciences 5 (2): 61-64, 2011 ISSN: 1307-1149, E-ISSN: 2146-0086, www.nobel.gen.tr

The Orlicz Space of Entire Sequences associated with Multiplier Sequences

N. SUBRAMANIAN^{1*} C. MURUGESAN²

¹Department of Mathematics, Sastra University, Tanjore-613 402, INDIA

2 Department of Mathematics, Sathyabama University, Chennai-600 119, INDIA

*Corresponding Author e-mail: nsmaths@yahoo.com

Received: March 30, 2011 **Accepted:** April 07, 2011

Abstract

Let $\lambda = {\lambda_1, \lambda_2, \dots}$ be a fixed sequence of non-zero complex numbers. Γ_M is the vector space of Orlicz space of entire sequences. Let $\Gamma_M(\lambda)$ be the subset of Γ_M for which $\{\lambda_k x_k\} \in \Gamma_M$. In this paper, we are concerned with some properties of $\Gamma_M(\lambda)$. In fact, for $\Gamma_M(\lambda)$ to be equal to Γ_M and for $\Gamma_M(\lambda)$ to be included in $\Gamma_M(\mu)$, the necessary and sufficient conditions are obtained. It is shown that $\prod_{i=1}^{M} (\lambda)$ is a complete metric space if and only if $\lim_{k \to \infty} \inf |\lambda_k|^{1/k} > 0$. Furthermore, conjugate space of $\Gamma_M(\lambda)$ is obtained .

Keywords and Phrases : entire sequences, analytic sequences, Orlicz functions. AMS Subject Classification : 40A05 , 40C05 , 40D05 , 46E45 .

INTRODUCTION

A complex sequence, whose k^{th} term is x_k is denoted by ${x_k}$ or simply by x .

Let w be the set of all sequences $x = \{x_k\}$ of all complex or real numbers and Φ be the set of all finite sequences.

A sequence $x = \{x_k\}$ is said to be analytic if $\sup_k |x_k|^{1/k} < \infty$. The vector space of all analytic sequences will be denoted by \land . A sequence χ is called entire sequence if $\lim_{k \to \infty} |x_k|^{1/k} = 0$. The vector space of all entire sequences will be denoted by Γ .

Orlicz [14] used the idea of Orlicz function to construct the space L^M . Lindenstrauss and Tzafriri [10] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space ℓ_M contains a subspace isomorphic to ℓ_p (1 ≤ *p* < ∞). Subsequently different classes of Orlicz type sequence spaces have been studied by Parashar and Choudhary [15], Mursaleen *et al* [11], Bektas and Altin [1], Tripathy *et al.* [17]. Rao and Subramanian [2] and many others. The Orlicz sequence spaces are the special cases of Orlicz spaces studied in Ref [8].

An Orlicz function is a function $M : [0, \infty) \rightarrow [0, \infty)$ which is continuous, non-decreasing and convex with $M(0) = 0, M(x) > 0$, for $x > 0$ and $M(x) \rightarrow \infty$, as $x \rightarrow \infty$.

If the convexity of Orlicz function *M* is replaced by $M(x+y) \le M(x) + M(y)$, then this function is called modulus function, defined Nakano [13] and further discussed by Ruckle [16], Maddox [12] and many others.

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to construct Orlicz sequence space

$$
\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) < \infty, \text{ for some } \rho > 0 \right\}
$$

The space ℓ_M with the norm

$$
||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M \left(\frac{|x_k|}{\rho} \right) \le 1 \right\}
$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^p$, $1 \le p < \infty$, the spaces ℓ_M coincide with the classical sequence space ℓ_p .

Given a sequence $x = \{x_k\}$ its n^{th} section is the sequence $(x^{(n)} = {x_1, x_2, ..., x_n, 0, 0, ...} \delta^{(n)} = (0, 0, ..., 1, 0, 0, ...),$ 1 in the n^{th} place and zero's elsewhere.

Definition 1.1: The space consisting of all those sequences *x* in *w* such that

$$
M\left(\frac{|x_k|^{1/k}}{\rho}\right) \to 0
$$
, as $k \to \infty$ for some arbitrary

fixed $\rho > 0$ is denoted by Γ_M , *M* being an Orlicz function.

In other words $\left[\begin{array}{c} M \\ P \end{array}\right]$ \downarrow $\overline{\mathcal{L}}$ $\overline{\mathcal{L}}$ ļ \int J $\overline{ }$ $\left(\right)$ $\overline{\mathcal{L}}$ $\overline{1}$ $M\left(\frac{|x_k|^{\frac{1}{\ell}}}{\rho}\right)$ is a null sequence . Γ_M is called the Orlicz space of entire sequences.

Definition 1.2. The space consisting of all those sequences x in *w* such that

 $\Bigg| < \infty$ $\big)$ λ $\Big($ ļ $\overline{(\ }$ ρ $\binom{1}{k}$ $\sup_{k} M\left(\frac{|x_k|^{\frac{1}{\ell}}}{\rho}\right) < \infty$ for some arbitrarily fixed $\rho > 0$ is denoted by \wedge_M' , *M* being a Orlicz function. In other words $\bigg\}$ \downarrow Ì $\overline{\mathfrak{l}}$ $\left\{ \right.$ $\sqrt{ }$ $\overline{}$ \backslash $\overline{}$ ſ $M\left(\frac{|x_k|^{\frac{1}{k}}}{\rho}\right)$

J L is a bounded sequence . \wedge_M is called the Orlicz space of analytic sequences.

The spaces Γ_M and \wedge_M are the metric spaces with the metric

$$
d(x, y) = \sup_{k} M\left(\frac{|x_k - y_k|^{1/k}}{\rho}\right)
$$

for all $x = \{x_k\}$ and $y = \{y_k\}$ in Γ_M and \wedge_M . Let $\lambda = {\lambda_1, \lambda_2, \lambda_3, \ldots}$ be a given sequence of complex numbers such that $\lambda_k \neq 0$ for all $k \in \mathbb{Z}$. The space $\Gamma_M(\lambda)$ is a metric space with the metric

$$
d(x, y) = \sup_{k} M\left(\frac{|\lambda_k|^{1/k} |x_k - y_k|^{1/k}}{\rho}\right), \text{ for all } x = \{x_k\} \text{ and}
$$

$$
y = \{y_k\} \text{ in } \Gamma_M(\lambda) .
$$

MAIN RESULTS

Proposition 1: $\Gamma_M(\lambda) = \Gamma_M \mathbf{f}$ and only $\mathbf{f} \lambda \in \wedge$, where \wedge is vector space of all analytic sequences.

Proof : Suppose that $\lambda \in \wedge$ Always $\Gamma_M(\lambda) \subset \Gamma_M$ (1.1)

Consequently , $x \in \Gamma_M(\lambda)$. Since $\lambda \in \wedge$, we have $\lambda x \in \Gamma_M$, for every $x \in \Gamma_M$.

Hence $\Gamma_M \subset \Gamma_M(\lambda)$. (1.2) From (1.1) and (1.2) we infer that $\Gamma_M(\lambda) = \Gamma_M$.

On the other hand, suppose that $\Gamma_M(\lambda) = \Gamma_M$. If λ was not analytic then for each

positive integer k , there is an n_k such that

$$
\left|\lambda_{n_k}\right|^{1/n_k} > k \tag{1.3}
$$

.

Define $x = \{x_n\}$ by

$$
M\left(\frac{|x_n|^{1/n}}{\rho}\right) = \begin{cases} \frac{1}{k}, & \text{if } n = n_k \ (k = 1, 2, \ \ldots \) ; \\ 0, & \text{otherwise} \end{cases}
$$

1 Then $x \in \Gamma_M$ from (1.3) and $M \left| \frac{|\lambda_n x_n|^{n}}{n} \right|$ ρ $\left(\frac{1}{2} + \frac{1}{n}\right)$ $\in \Gamma_M$ from (1.3) and $M\left(\frac{|R_n x_n|}{\rho}\right)$ =

1 $M\left[\frac{|\lambda_{n_k}x_{n_k}|^{n_k}}{n_k}\right] > 1$ $\left\lceil\frac{\left|\lambda_{_{n_k}}x_{_{n_k}}\right|^{V_{n_k}}}{\rho}\right\rceil>$ $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

 $\Gamma_M(\lambda) = \Gamma_M$. Showing that $\lambda_k \notin \Gamma_M$. This is a contradiction to This contradiction shows that $\lambda \in \wedge$. This completes the proof .

Proposition 2: Let $\lambda = (\lambda_k)$ and $\mu = (\mu_k)$ be two arbitrary fixed sequences of non-zero complex numbers. Then $\Gamma_M(\lambda) \subset \Gamma_M(\mu)$ if and only if

$$
\left\{\min\left\{\left|\frac{\mu_k}{\lambda_k}\right|^\frac{1}{K}, \, \, |\mu_k|^\frac{1}{K}\right\}\right\} \text{ is analytic.}\tag{2.1}
$$

Proof:

for which $|\lambda_k|^{1/k} > 1$. Let A denote the set of those positive integers k

for which $|\lambda_k|^{1/k} \leq 1$. Let B denote the set of those positive integers k

$$
k \in A \Rightarrow \min \left\{ \left| \frac{\mu_k}{\lambda_k} \right| \right\}^{\frac{1}{k}}, \left| \mu_k \right| \left| \frac{\nu_k}{\lambda_k} \right| = \left| \frac{\mu_k}{\lambda_k} \right|^{\frac{1}{k}}
$$

$$
k \in B \Rightarrow \min \left\{ \left| \frac{\mu_k}{\lambda_k} \right| \right\}^{\frac{1}{k}}, \left| \mu_k \right| \left| \frac{\nu_k}{\lambda_k} \right| = \left| \mu_k \right| \left| \frac{\nu_k}{\lambda_k} \right|.
$$

 (2.1) 1 Hence (2.1) is equivalent to the assertion that $\sqrt{\frac{\mu_k}{\lambda}}$ *k* μ $\left\{\left|\frac{\mu_k}{\lambda_k}\right|^{1/k}\right\}$ $\begin{pmatrix} |A_k| & \end{pmatrix}$

is analytic for $k \in A$ and

 $\left\{ \left. \left| \mu_k \right|^{1/k} \right\} \right\}$ is analytic for $k \in B$. Suppose that this holds and that $x \in \Gamma_M(\lambda)$.

If
$$
k \in A
$$
, write $M\left(\frac{|x_k \mu_k|^{1/k}}{\rho}\right) = M\left(\left(\frac{|x_k \lambda_k|^{1/k}}{\rho}\right)\left(\frac{|\mu_k|^{1/k}}{\lambda_k}\right)\right)$
\nIf $k \in B$, write $M\left(\frac{|x_k \mu_k|^{1/k}}{\rho}\right) = M\left(\frac{|x_k|^{1/k}}{\rho}\right) |\mu_k|^{1/k}$.
\nIn either case, $M\left(\frac{|x_k \mu_k|^{1/k}}{\rho}\right)$ is arbitrarily small for
\nsufficiently large k . Hence $x \in \Gamma_M(\mu)$.

Thus $\Gamma_M(\lambda) \subset \Gamma_M(\mu)$.

On the other hand, if (2.1) is false, we can find an increasing sequence of (2.2)

positive integers
$$
\{k_r\}
$$

\nsuch that\n
$$
\left| \frac{\mu_{k_r}}{\lambda_{k_r}} \right| \stackrel{\text{y}_{k_r}}{\geq r}
$$
\nand\n
$$
\left| \mu_{k_r} \right| \stackrel{\text{y}_{k_r}}{\geq r} \quad \text{for } r = 1, 2, 3, \dots
$$
\n(2.3)

If
$$
|\lambda_{k_r}|^{\frac{1}{k_r}} > 1
$$
 choose $M\left(\frac{|x_{k_r}|^{\frac{1}{k_r}}}{\rho}\right) = \frac{1}{|\lambda_{k_r}|^{k_r}}$. Then (2.2)
\ngives $M\left(\frac{|x_{k_r} \mu_{k_r}|^{\frac{1}{k_r}}}{\rho}\right) \ge 1$.
\nIf $|\lambda_{k_r}|^{\frac{1}{k_r}} < 1$ choose $M\left(\frac{|x_{k_r}|^{\frac{1}{k_r}}}{\rho}\right) = \frac{1}{r}$.
\nThen (2.3) gives $M\left(\frac{|x_{k_r} \mu_{k_r}|^{\frac{1}{k_r}}}{\rho}\right) \ge 1$.

Thus in either case $x \in \Gamma_M(\lambda)$ but $x \notin \Gamma_M(\mu)$.

 $\Gamma_M(\lambda) \subset \Gamma_M(\mu)$. This contradicts our present hypothesis that

This completes the proof .

Theorem 1: $(\Gamma_M(\lambda), d)$ is a complete metric space if and only if $\lim_{k\to\infty}$ in $f(\lambda_k)^{1/k} > 0$ (3.1)

Proof: Suppose that (3.1) holds.

Let
$$
\{x^{(n)}\}
$$
 be any

Cauchy sequence in $\Gamma_M(\lambda)$. Given any $\varepsilon > 0$, there exists a positive integer n_0 such that

$$
d\left(x^n, x^m\right) = |\lambda|^{\frac{1}{\ell_k}} M\left(\frac{\left|x_k^{(n)} - x_k^{(m)}\right|^{\frac{1}{\ell_k}}}{\rho}\right) < \varepsilon,
$$
\nfor all $n \geq 0$ and all $k \in \mathbb{Z}$

\n(3.2)

for all $n, m \ge 0$ and all $k \in \mathbb{Z}$.

Let
$$
L = \inf \{ | \lambda_k |^{1/k} : k = 1, 2, 3, ... \}
$$
. Then from
3.2) we get

$$
M\left(\frac{\left|x_{k}^{(n)} - x_{k}^{(m)}\right|^{1/k}}{\rho}\right) < \frac{\varepsilon}{L} \quad \text{for all } n, m \ge n_0 \tag{3.3}
$$

Hence $\{x_k^{(n)} : n = 1, 2, \ldots \}$ is a Cauchy sequence of complex numbers .

So,
$$
M\left(\frac{|x_k^{(n)}|^{1/k}}{\rho}\right) \to M\left(\frac{|x_k|^{1/k}}{\rho}\right), (n \to \infty),
$$

for all $k = 1, 2, 3, ...$

Now we show that $x \in \Gamma_M(\lambda)$.

Take $x = \{x_k\}$. Letting $m \to \infty$ in (3.2), we have $d\left(x_k^{(n)}, x\right) \to 0$, as $n \to \infty$.

From (3.3) and the fact that $\left(x_k^{(n_0)}\right) \in \Gamma_M(\lambda)$ for each fixed n_0 we see that

$$
|\lambda_k|^{1/k} \lim_{n \to \infty} M\left(\frac{|x_k^{(n)}|^{1/k}}{\rho}\right) \le |\lambda_k|^{1/k} M\left(\frac{|x_k^{(n_0)}|^{1/k}}{\rho}\right)
$$

That is
$$
|\lambda_k| M\left(\frac{|x_k|^{\frac{1}{\ell_k}}}{\rho}\right) \to 0
$$
, as $k \to \infty$.

So, $x \in \Gamma_M(\lambda)$. Thus $\Gamma_M(\lambda)$ **is** complete. Conversely, Suppose that $\Gamma_M(\lambda)$ is complete.

If (3.1) is not true, then $\left\{ |\lambda_k| \neq k \right\}$ contains subsequence $\{\lambda_{k_i}\}\$ which steadily decreases and tends

$$
\left(\begin{array}{c}\n\ldots \\
\vdots \\
\vdots\n\end{array}\right)
$$
 to zero.

Consider the sequence
$$
\{\alpha^{(n)}\}
$$
, where
\n
$$
\alpha_k^{(n)} = \begin{cases}\n1, & \text{if } k = k_1, k_2, \dots, k_n \\
0, & \text{otherwise.} \n\end{cases}
$$

Then $\alpha^{(n)} \in \Gamma_M(\lambda)$ for all $n = 1, 2, ...$

For $n > m$, we have

$$
d(\alpha^{(m)}, \alpha^{(n)}) = |\lambda_{k_{n+1}}|^{k_{n+1}} \rightarrow 0 \text{ a } m \rightarrow \infty
$$

Hence $\{\alpha^{(n)}\}\$ is a cauchy sequence in $\Gamma_M(\lambda)$.

If
$$
\lim_{n \to \infty} \alpha^{(n)}
$$
 exists, then $\lim_{n \to \infty} \alpha^{(n)} = \{1,1,1,\dots\}$

 $\limmin_{M} \limsup_{\lambda \to 0} \hat{u}$ cease to be complete , a contradiction .

Hence (3.1) must hold whenever $\Gamma_M(\lambda)$ is complete .

This completes the proof .

Notation:
$$
\wedge \left(\frac{1}{\mu}\right) = \left\{ y = \left\{ y_k \right\} : \left\{ \frac{y_k}{\mu_k} \right\} \in \wedge \right\}
$$

Theorem 2:

The topological dual of $\left[\Gamma_M(\lambda)\right]$ is $\wedge \left(\frac{1}{\mu}\right)$. $\left[\Gamma_M(\lambda)\right]$ is $\wedge \left(\frac{1}{\mu}\right)$

In other words
$$
\left[\Gamma_M(\lambda)\right]^* = \Lambda\left(\frac{1}{\mu}\right)
$$

Proof:

Note that $\Gamma_M(\lambda)$ is the set of all those sequences

$$
\{x_k\} \text{ such that } M\left(\frac{|x_k|^{1/k}}{\rho}\right) \to 0 \text{ and}
$$

$$
M\left(\frac{|a_k x_k|^{1/k}}{\rho}\right) \to 0, \text{ as } k \to \infty. \text{ These two}
$$

conditions together are equivalent to

$$
M\left(\frac{|\mu_k x_k|^{1/k}}{\rho}\right) \to 0, \text{ as } k \to \infty
$$

where $\mu_k = \text{Max} \left\{1, \left[\lambda_k\right]^{1/k}\right\}$ (4.1)

We recall that $\delta^{(k)}$ has 1 in the k^{th} place and zero's elsewhere .

If we take
$$
x = \delta^{(k)}
$$
, then
$$
\left\{ M \left(\frac{|x_k|^{\frac{1}{k}}}{\rho} \right) \right\} = \left\{ \frac{M(0)}{\rho}, \frac{M(0)^{\frac{1}{2}}}{\rho}, \dots, \frac{M(1)^{\frac{1}{k}}}{\rho}, \frac{M(0)^{\frac{1}{k+1}}}{\rho}, \dots \right\}
$$

$$
= \left\{ 0, 0, \dots, \frac{M(1)^{\frac{1}{k}}}{\rho}, 0, \dots \right\}
$$

which is a null sequence. Hence $\delta^{(k)} \in \Gamma_M(\lambda)$, $\delta^{(k)} \in \Gamma_M(\lambda)$

$$
f(x) = \sum_{k=1}^{\infty} x_k y_k \text{ with } x \in \Gamma_M(\lambda) \text{ and } f \in \left[\Gamma_M(\lambda)\right]^* \text{ ,}
$$

where Γ_M^* is the dual space of Γ_M . Take

 $x = \delta^{(k)} \in \Gamma_M(\lambda)$. Then

$$
|\mu_k y_k\left(\frac{1}{\mu_k}\right) \leq ||f|| d(\delta^k, 0) < \infty \,\forall k
$$

Thus $(\mu_k y_k)$ is a bounded sequence and hence an

analytic sequence .In other words , $y \in \wedge \left(\begin{array}{c} 1 \\ - \end{array} \right)$. μ $\in \wedge \left(\frac{1}{\mu} \right)$

There fore $\left[\Gamma_M(\lambda)\right]^* = \lambda \left(\frac{1}{\mu}\right)$. J \setminus $\overline{}$ \setminus $\Gamma_{\scriptscriptstyle M}(\lambda)$ ^{*} = \wedge $\mathcal{L}_{M}\left(\lambda\right) \right] ^{\ast}=\wedge\sqrt{\frac{1}{\mu}}% \mathcal{L}_{M}\left(\frac{1}{\mu}\right) \text{ \ }N_{M}\left(\frac{1}{\$

This completes the proof .

REFERENCES

- [1] Ç, Bektaş, and Y, Altin, The sequence space $l_M(p,q,s)$ on seminormed spaces, Indian J. Pure Appl.Math.34 (4) (2003), 529-534.
- [2] K.Chandrasekhara Rao and N.Subra-manian, The Orlicz space of entire sequences*.* INT. J. MATH. MATH. SCI. 68 (2004), 3755--3764.
- [3] K.Chandrasekhara Rao, (1978). Cesaro space of analytic sequences, Proceedings of the National Academy of Sciences, India. Section A.Vol.48; p.192-194 .
- [4] K.Chandrasekhara Rao and N.Subra-manian , A subset of the space of the entire sequences, Commun. Fac. Sci Univ. Ank. Series A1 V.50.pp.55-63(2001) .
- [5] K.Chandrasekhara Rao and K.S Narayanan, General Topology (Part-1), S.Viswanathan (Printers and Publishers) pvt.Ltd., Madras(1986) .
- [6] R. Çolak, and M. Et, E. Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathematics, Firat University Press, Elazig, Turkey, 2004.
- [7] C.Goffman and G.Pedrick, (1974), First Course in Functional Analysis, Prentice Hall India , New Delhi .
- [8] M.A, Krasnoselskii and Y.B Rutickii, Convex Functions and Orlicz Spaces, Gorningen, Netherlands, 1961.
- [9] P. K. Kamthan and M. Gupta, Sequence spaces and series. Lecture Notes in Pure and Applied Mathematics, 65. MARCEL DEKKER, INC., NEW YORK, 1981.
- [10] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J.Math.10(1971), 379-390.
- [11] M. Mursaleen, M.A.Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math Vol.XXXII (1999), 145-150.
- [12] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Phil. Soc. 100(1) (1986), 161-166
- [13] Nakano, Concave modulars; J. Math. Soc. Japan; 5 (1953), 29-49.
- [14] W. Orlicz, Über Raume (L^M) , Bull. Int.Acad. Polon. Sci. A (1936), 93-107.
- [15] S.D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J.Pure.Appl. Math 25(4) (1994), 419-428.
- [16] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25(1973), 973-978.
- [17] B.C. Tripathy, M.Et and Y. Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J.Analysis and Applications,. 1(3) (2003),.175-192.
- [18] A.Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies ,Vol.85 , North-Holland Publishing , Amsterdam , 1984.