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Abstract
Let { } . . . ,, 21 λλλ = be a fixed sequence of non-zero complex numbers. MΓ  is the vector space of  Orlicz space of entire sequences . 

Let ( )λMΓ be the subset of MΓ  for which { } Mkk x Γ∈λ  . In this paper,  we are concerned with some properties of ( )λMΓ . In fact, for 
( )λMΓ  to be equal to MΓ and for ( )λMΓ   to be included in ( )µMΓ , the necessary and sufficient conditions are obtained . It is shown 

that ( )λMΓ  is a complete metric space if and only if 0 inflim
1
>

∞→
k

kk
λ .  Furthermore, conjugate space of ( )λMΓ  is obtained . 
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INTRODUCTION
        
A complex sequence, whose thk  term is kx  is denoted by 

{ }kx  or simply by x  .
Let w be the set of all sequences { }kx x=   of all complex 

or real numbers and  Φ  be the set of all finite sequences.
A sequence { }kx x=  is said to be analytic if 

1/sup  .k
k

k
x < ∞ The vector space of all analytic sequences  

will be denoted by ∧.  A sequence x  is called entire sequence 
if .0  lim /1 =

∞→

k
kk

x  The vector space of all entire  sequences will 
be denoted by Γ  .

Orlicz [14] used the idea of Orlicz function to construct the 
space ML . Lindenstrauss and Tzafriri [10] investigated Orlicz 
sequence spaces in more detail, and they proved that every 
Orlicz sequence space M  contains a subspace isomorphic to 

).1( ∞<≤ pp  Subsequently different classes of Orlicz type 
sequence spaces have been studied by  Parashar and Choudhary 
[15], Mursaleen et al [11], Bektas and Altin [1], Tripathy et al. 
[17]. Rao and Subramanian [2] and many others. The Orlicz 
sequence spaces are the special cases of Orlicz spaces studied 
in Ref [8].

An Orlicz function is a function [ ) [ )∞→∞ ,0,0:M  
which is continuous, non-decreasing and convex with 

( ) ( ) ,0,00 >= xMM  for x > 0  and ( ) ∞→xM , as ∞→x . 
If the convexity of Orlicz function M  is replaced by 
( ) ( ) ( )     , yMxMyxM +≤+ then this function is called modulus 

function, defined Nakano [13] and further discussed by Ruckle 
[16] , Maddox [12] and many others.   

Lindenstrauss and Tzafriri [10] used the idea of Orlicz 
function to construct Orlicz sequence space
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becomes a Banach space which is called an Orlicz sequence 
space. For ,1,)( ∞<≤= pttM p  the spaces M  coincide with 
the classical sequence space p .

Given a sequence { }kxx = its  n th  section is the sequence 
( ) { } . . . .0,0,,, . . .,, 21 n
n xxxx =

 
                                                 

( ) ( ),   . . 1,0,0,. , . . .,0,0  =nδ

1 in the n th  place and zero’s elsewhere . 

Definition 1.1:  The space consisting of all those sequences 
x  in w  such that 
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fixed ρ  > 0  is denoted by   ΓM  , M  being an Orlicz function. 
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 is a null sequence . MΓ  is 
called  the Orlicz space of entire sequences. 
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Definition 1.2.  The space consisting of all those sequences x  
in w  such that

 ∞<
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sup  for some arbitrarily fixed  ρ  > 0  is 

denoted by   M∧  , M  being  a Orlicz function. In other words  
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is a bounded  sequence . M∧  is called the Orlicz 
space of  analytic sequences. 

The spaces MM ∧Γ  and   are  the metric spaces with the metric

( )
1

, sup
k

k k

k
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d x y M
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for all { }kxx =  and { }kyy =  in MM ∧Γ  and . Let 

{ }1 2 3, , , . . . λ λ λ λ= be a given sequence of complex 
numbers such that 0 for all . k kλ ≠ ∈�  ( )The space   M λΓ  
is a metric space with the metric 
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MAIN RESULTS

Proposition 1: ( ) ∧∈Γ=Γ λλ  ifonly  and if MM , where ∧  is 
vector space of all analytic sequences.

Proof : ( ) MM Γ⊂Γ∧∈ λλ  Always .  that Suppose                          (1.1)
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Since  , we have ,  for every  . 
Consequently ,  . 
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( )Hence .M M λΓ ⊂ Γ                 (1.2)                                                         

( )  .  infer that  we(1.2) and (1.1) From MM Γ=Γ λ
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 . proof  thecompletes This

Proposition 2: Let ( ) ( ) and k kλ λ µ µ= =  be two arbitrary 
fixed sequences of non-zero complex numbers. Then 

( ) ( )  if and only if M Mλ µΓ ⊂ Γ
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( )On the other hand , if 2.1  is false , we can find 
an increasing sequence of  

{ }positive integers rk
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Theorem 2:
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