

International Journal of Natural and Engineering Sciences 5 (2): 61-64, 2011 ISSN: 1307-1149, E-ISSN: 2146-0086, www.nobel.gen.tr

The Orlicz Space of Entire Sequences associated with Multiplier Sequences

N. SUBRAMANIAN^{1*}

¹Department of Mathematics, Sastra University, Tanjore-613 402, INDIA

C. MURUGESAN²

²Department of Mathematics, Sathyabama University, Chennai-600 119, INDIA

*Corresponding Author e-mail: nsmaths@yahoo.com

Received: March 30, 2011 Accepted: April 07, 2011

Abstract

Let $\lambda = \{\lambda_1, \lambda_2, ...\}$ be a fixed sequence of non-zero complex numbers. Γ_M is the vector space of Orlicz space of entire sequences. Let $\Gamma_M(\lambda)$ be the subset of Γ_M for which $\{\lambda_k x_k\} \in \Gamma_M$. In this paper, we are concerned with some properties of $\Gamma_M(\lambda)$. In fact, for $\Gamma_M(\lambda)$ to be equal to Γ_M and for $\Gamma_M(\lambda)$ to be included in $\Gamma_M(\mu)$, the necessary and sufficient conditions are obtained. It is shown that $\Gamma_M(\lambda)$ is a complete metric space if and only if $\liminf_{k \to \infty} |\lambda_k|^{\kappa} > 0$. Furthermore, conjugate space of $\Gamma_M(\lambda)$ is obtained.

Keywords and Phrases : entire sequences, analytic sequences, Orlicz functions. AMS Subject Classification : 40A05, 40C05, 40D05, 46E45.

INTRODUCTION

A complex sequence, whose k^{th} term is x_k is denoted by $\{x_k\}$ or simply by x.

Let w be the set of all sequences $x = \{x_k\}$ of all complex or real numbers and Φ be the set of all finite sequences.

A sequence $x = \{x_k\}$ is said to be analytic if $\sup_{k} |x_k|^{1/k} < \infty$. The vector space of all analytic sequences will be denoted by \wedge . A sequence x is called entire sequence if $\lim_{k \to \infty} |x_k|^{1/k} = 0$. The vector space of all entire sequences will be denoted by Γ .

Orlicz [14] used the idea of Orlicz function to construct the space L^{M} . Lindenstrauss and Tzafriri [10] investigated Orlicz sequence spaces in more detail, and they proved that every Orlicz sequence space ℓ_M contains a subspace isomorphic to ℓ_p ($1 \le p < \infty$) Subsequently different classes of Orlicz type sequence spaces have been studied by Parashar and Choudhary [15], Mursaleen et al [11], Bektas and Altin [1], Tripathy et al. [17]. Rao and Subramanian [2] and many others. The Orlicz sequence spaces are the special cases of Orlicz spaces studied in Ref [8].

An Orlicz function is a function $M:[0,\infty) \to [0,\infty)$ which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \to \infty$, as $x \to \infty$.

If the convexity of Orlicz function M is replaced by $M(x+y) \le M(x) + M(y)$, then this function is called modulus function, defined Nakano [13] and further discussed by Ruckle [16], Maddox [12] and many others.

Lindenstrauss and Tzafriri [10] used the idea of Orlicz function to construct Orlicz sequence space

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

The space ℓ_M with the norm

$$\|x\| = \inf\left\{\rho > 0: \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t) = t^p$, $1 \le p < \infty$, the spaces ℓ_M coincide with the classical sequence space ℓ_p .

Given a sequence $x = \{x_k\}$ its n^{th} section is the sequence $x^{(n)} = \{x_1, x_2, \dots, x_n, 0, 0, \dots\} \ \delta^{(n)} = (0, 0, \dots, 1, 0, 0, \dots),$ 1 in the n^{th} place and zero's elsewhere.

Definition 1.1: The space consisting of all those sequences x in w such that

$$M\left(\frac{|x_k|^{\gamma_k}}{\rho}\right) \to 0$$
, as $k \to \infty$ for some arbitrary

fixed $\rho > 0$ is denoted by Γ_M , *M* being an Orlicz function.

In other words $\left\{ M\left(\frac{|\mathbf{x}_k|^{\mathcal{V}_k}}{\rho}\right) \right\}$ is a null sequence . Γ_M is called the Orlicz space of entire sequences.

Definition 1.2. The space consisting of all those sequences xin w such that

 $\sup_{k} M\left(\frac{|x_{k}|^{\frac{1}{k}}}{\rho}\right) < \infty \quad \text{for some arbitrarily fixed} \quad \rho > 0 \text{ is}$ denoted by \bigwedge_{M} , M being a Orlicz function. In other words $\left\{ M\left(\frac{|\mathbf{x}_k|^{\frac{1}{k}}}{\rho}\right) \right\}$ is a bounded sequence . \wedge_M is called the Orlicz

The spaces Γ_M and \wedge_M are the metric spaces with the metric $d(x, y) = \sup M\left(\frac{|x_k - y_k|^{\frac{1}{k}}}{2}\right)$

for all
$$x = \{x_k\}$$
 and $y = \{y_k\}$ in Γ_M and
 $\lambda = \{\lambda_1, \lambda_2, \lambda_3, \dots\}$ be a given sequence of

f complex numbers such that $\lambda_k \neq 0$ for all $k \in \Box$. The space $\Gamma_M(\lambda)$ is a metric space with the metric

$$d(x, y) = \sup_{k} M\left(\frac{|\lambda_{k}|^{\gamma_{k}} |x_{k} - y_{k}|^{\gamma_{k}}}{\rho}\right), \text{ for all } x = \{x_{k}\} \text{ and}$$
$$y = \{y_{k}\} \text{ in } \Gamma_{M}(\lambda).$$

MAIN RESULTS

Proposition 1: $\Gamma_M(\lambda) = \Gamma_M \mathbf{f}$ and only $\mathbf{f} \ \lambda \in \wedge$, where \wedge is vector space of all analytic sequences.

Proof: Suppose that $\lambda \in \wedge$. Always $\Gamma_M(\lambda) \subset \Gamma_M$ (1.1)

Since $\lambda \in \wedge$, we have $\lambda x \in \Gamma_M$, for every $x \in \Gamma_M$.

Consequently, $x \in \Gamma_M(\lambda)$.

(1.2)Hence $\Gamma_M \subset \Gamma_M(\lambda)$. From (1.1) and (1.2) we infer that $\Gamma_M(\lambda) = \Gamma_M$.

On the other hand, suppose that $\Gamma_M(\lambda) = \Gamma_M$.

If λ was not analytic then for each

positive integer k , there is an n_k such that

$$\left|\lambda_{n_k}\right|^{\gamma_{n_k}} > k \tag{1.3}$$

;

Define $x = \{x_n\}$ by

$$M\left(\frac{|\mathbf{x}_n|^{\frac{1}{n}}}{\rho}\right) = \begin{cases} \frac{1}{k} , \text{ if } n = n_k \ (k = 1, 2, \dots) \\ 0, \text{ otherwise} \end{cases}$$

Then $x \in \Gamma_M$ from (1.3) and $M\left(\frac{|\lambda_n x_n|^{\gamma_n}}{\rho}\right) =$

 $M\left(\frac{\left|\lambda_{n_k} x_{n_k}\right|^{\frac{1}{n_k}}}{\rho}\right) > 1$

Showing that $\lambda_k \notin \Gamma_M$. This is a contradiction to $\Gamma_M(\lambda) = \Gamma_M$.

This contradiction shows that $\lambda \in \wedge$. This completes the proof.

Proposition 2: Let $\lambda = (\lambda_k)$ and $\mu = (\mu_k)$ be two arbitrary fixed sequences of non-zero complex numbers. Then $\Gamma_{M}(\lambda) \subset \Gamma_{M}(\mu)$ if and only if

$$\left\{\min\left\{\left|\frac{\mu_k}{\lambda_k}\right|^{\lambda_k}, |\mu_k|^{\lambda_k}\right\}\right\} \text{ is analytic.}$$
(2.1)

Proof:

Let A denote the set of those positive integers k \wedge_{M} . Let for which $\left|\lambda_{k}\right|^{\frac{1}{k}} > 1$.

> Let B denote the set of those positive integers kfor which $\left|\lambda_k\right|^{\frac{1}{k}} \leq 1$.

$$k \in A \Rightarrow \min \left\{ \frac{|\mu_k|}{|\lambda_k|}, |\mu_k|^{\frac{1}{k}} \right\} = \frac{|\mu_k|}{|\lambda_k|}$$
$$k \in B \Rightarrow \min \left\{ \frac{|\mu_k|}{|\lambda_k|}, |\mu_k|^{\frac{1}{k}} \right\} = |\mu_k|^{\frac{1}{k}}.$$

Hence (2.1) is equivalent to the assertion that $\left\{ \left| \frac{\mu_k}{\lambda_k} \right|^{\frac{1}{k}} \right\}$

is analytic for $k \in A$ and

 $\left\{ \left. \left| \mu_k \right|^{j_k} \right\}$ is analytic for $k \in B$. Suppose that this holds and that $x \in \Gamma_M(\lambda)$.

If
$$k \in A$$
, write $M\left(\frac{|x_k\mu_k|^{\frac{1}{k}}}{\rho}\right) = M\left(\left(\frac{|x_k\lambda_k|^{\frac{1}{k}}}{\rho}\right)\left(\frac{|\mu_k|^{\frac{1}{k}}}{\lambda_k}\right)\right)$
If $k \in B$, write $M\left(\frac{|x_k\mu_k|^{\frac{1}{k}}}{\rho}\right) = M\left(\frac{|x_k|^{\frac{1}{k}}}{\rho}\right)|\mu_k|^{\frac{1}{k}}$.
In either case, $M\left(\frac{|x_k\mu_k|^{\frac{1}{k}}}{\rho}\right)$ is arbitrarily small for
sufficiently large k . Hence $x \in \Gamma_M(\mu)$.

Thus
$$\Gamma_{\mathcal{M}}(\lambda) \subset \Gamma_{\mathcal{M}}(\mu)$$
.

On the other hand, if (2.1) is false, we can find (2.2)an increasing sequence of

positive integers $\{k_r\}$

such that $\left|\frac{\mu_{k_r}}{\lambda}\right|^{\frac{1}{k_r}} \ge r$

and
$$|\mu_{k_r}|^{j_{k_r}} \ge r$$
 for $r = 1, 2, 3, ...$ (2.3)

If
$$\left|\lambda_{k_{r}}\right|^{J_{k_{r}}} > 1$$
 choose $M\left(\frac{\left|x_{k_{r}}\right|^{J_{k_{r}}}}{\rho}\right) = \frac{1}{\left|\lambda_{k_{r}}\right|^{k_{r}}}$. Then (2.2)
gives $M\left(\frac{\left|x_{k_{r}}\mu_{k_{r}}\right|^{J_{k_{r}}}}{\rho}\right) \ge 1$.
If $\left|\lambda_{k_{r}}\right|^{J_{k_{r}}} < 1$ choose $M\left(\frac{\left|x_{k_{r}}\mu_{k_{r}}\right|^{J_{k_{r}}}}{\rho}\right) = \frac{1}{r}$.
Then (2.3) gives $M\left(\frac{\left|x_{k_{r}}\mu_{k_{r}}\right|^{J_{k_{r}}}}{\rho}\right) \ge 1$.

Thus in either case $x \in \Gamma_M(\lambda)$ but $x \notin \Gamma_M(\mu)$.

This contradicts our present hypothesis that $\Gamma_{M}(\lambda) \subset \Gamma_{M}(\mu)$.

This completes the proof.

Theorem 1:

 $(\Gamma_{M}(\lambda), d)$ is a complete metric space if and only if $\liminf_{k\to\infty} \left|\lambda_k\right|^{\frac{1}{k}} > 0$ (3.1)

Proof: Suppose that (3.1) holds.

Let
$$\left\{x^{(n)}\right\}$$
 be any

Cauchy sequence in $\Gamma_M(\lambda)$. Given any $\varepsilon > 0$, there exists a positive integer n_0 such that

$$d\left(x^{n}, x^{m}\right) = \left|\lambda\right|^{\frac{1}{k}} M\left(\frac{\left|x_{k}^{(n)} - x_{k}^{(m)}\right|^{\frac{1}{k}}}{\rho}\right) < \varepsilon,$$
(3.2)
for all $n, m \ge 0$ and all $k \in \Box$

for all $n, m \ge 0$ and all $k \in \square$.

Let
$$L = \inf \left\{ \left| \lambda_k \right|^{\frac{1}{k}} : k = 1, 2, 3, \dots \right\}$$
. Then from 3.2) we get

$$M\left(\frac{\left|x_{k}^{(n)}-x_{k}^{(m)}\right|^{\frac{1}{k}}}{\rho}\right) < \frac{\varepsilon}{L} \quad \text{for all } n, m \ge n_{0}$$
(3.3)

Hence $\{x_k^{(n)}: n = 1, 2, ...\}$ is a Cauchy sequence of complex numbers .

So,
$$M\left(\frac{|x_k^{(n)}|^{\frac{1}{k}}}{\rho}\right) \to M\left(\frac{|x_k^{(n)}|^{\frac{1}{k}}}{\rho}\right), (n \to \infty),$$

for all $k = 1, 2, 3, \ldots$

Now we show that $x \in \Gamma_M(\lambda)$.

Take $x = \{x_k\}$. Letting $m \to \infty$ in (3.2), we have $d(x_k^{(n)}, x) \to 0$, as $n \to \infty$.

From (3.3) and the fact that $(x_k^{(n_0)}) \in \Gamma_M(\lambda)$ for each fixed n_0 we see that

$$\begin{aligned} \left|\lambda_{k}\right|^{\frac{1}{k}} & \lim_{n \to \infty} M\left(\frac{\left|x_{k}^{(n)}\right|^{\frac{1}{k}}}{\rho}\right) \leq \left|\lambda_{k}\right|^{\frac{1}{k}} M\left(\frac{\left|x_{k}^{(n_{0})}\right|^{\frac{1}{k}}}{\rho}\right) \\ +\frac{\varepsilon}{L} \end{aligned}$$

That is
$$|\lambda_k| M\left(\frac{|x_k|^{j_k}}{\rho}\right) \to 0$$
, as $k \to \infty$.

So, $x \in \Gamma_M(\lambda)$. Thus $\Gamma_M(\lambda)$ is complete. Conversely, Suppose that $\Gamma_M(\lambda)$ is complete.

If (3.1) is not true, then $\left\{ \left| \lambda_k \right|^{\frac{1}{k}} \right\}$ contains subsequence $\{\lambda_{k_i}\}$ which steadily decreases and tends

to zero.
$$((n))$$

Consider the sequence
$$\{\alpha^{(n)}\}\$$
, where
 $\alpha_k^{(n)} = \begin{cases} 1, \text{ if } k = k_1, k_2, \dots, k_n \\ 0, \text{ other wise.} \end{cases}$

Then $\alpha^{(n)} \in \Gamma_{\mathcal{M}}(\lambda)$ for all n = 1, 2, ...

For n > m, we have

$$d(\alpha^{(m)},\alpha^{(n)}) = |\lambda_{k_{n+1}}|^{1/2} \to 0 \mathbf{a} \quad m \to \infty$$

Hence $\{\alpha^{(n)}\}$ is a cauchy sequence in $\Gamma_M(\lambda)$.

If
$$\lim_{n \to \infty} \alpha^{(n)}$$
 exists, then $\lim_{n \to \infty} \alpha^{(n)} = \{1, 1, 1, ...\}$

 $\Gamma_{M}(\lambda)$, cease to be complete, a contradiction.

Hence (3.1) must hold whenever $\Gamma_M(\lambda)$ is complete .

This completes the proof.

Notation:
$$\wedge \left(\frac{1}{\mu}\right) = \left\{ y = \{y_k\} : \left\{\frac{y_k}{\mu_k}\right\} \in \wedge \right\}$$

Theorem 2:

The topological dual of $\left[\Gamma_{M}(\lambda)\right]$ is $\wedge \left(\frac{1}{\mu}\right)$.

In other words
$$\left[\Gamma_M(\lambda)\right]^* = \wedge \left(\frac{1}{\mu}\right)$$

Proof:

Note that $\Gamma_{M}(\lambda)$ is the set of all those sequences

$$\{x_k\}$$
 such that $M\left(\frac{|x_k|^{\frac{1}{k}}}{\rho}\right) \to 0$ and
 $M\left(\frac{|\lambda_k x_k|^{\frac{1}{k}}}{\rho}\right) \to 0$, as $k \to \infty$. These two

conditions together are equivalent to

$$M\left(\frac{|\mu_{k}x_{k}|^{\frac{1}{k}}}{\rho}\right) \to 0, \text{ as } k \to \infty$$

$$(4.1)$$
where $\mu_{k} = \max\left\{1, [\lambda_{k}]^{\frac{1}{k}}\right\}$

We recall that $\delta^{(k)}$ has 1 in the k^{th} place and zero's elsewhere.

If we take
$$x = \delta^{(k)}$$
, then $\left\{ M\left(\frac{|x_k|^{1/k}}{\rho}\right) \right\} = \left\{ \frac{M(0)}{\rho}, \frac{M(0)^{1/2}}{\rho}, \dots, \frac{M(1)^{1/k}}{\rho}, \frac{M(0)^{1/k+1}}{\rho}, \dots \right\}$
$$= \left\{ 0, 0, \dots, \frac{M(1)^{1/k}}{\rho}, 0, \dots \right\}$$

which is a null sequence . Hence $\delta^{(k)} \in \Gamma_M(\lambda)$,

$$f(x) = \sum_{k=1}^{\infty} x_k y_k \text{ with } x \in \Gamma_M(\lambda) \text{ and } f \in \left[\Gamma_M(\lambda)\right]^*$$

where Γ_M^* is the dual space of Γ_M . Take $x = \delta^{(k)} \in \Gamma_M(\lambda)$.

Then

$$|\mu_k y_k| \left(\frac{1}{\mu_k}\right) \leq ||f|| d(\delta^k, 0) < \infty \forall k$$

Thus $(\mu_k y_k)$ is a bounded sequence and hence an

analytic sequence .In other words, $y \in \wedge \left(\frac{1}{\mu}\right)$.

There fore $[\Gamma_M(\lambda)]^* = \wedge \left(\frac{1}{\mu}\right).$

This completes the proof.

REFERENCES

- [1] Ç, Bektaş, and Y, Altin, The sequence space $l_M(p,q,s)$ on seminormed spaces, Indian J. Pure Appl.Math.34 (4) (2003), 529-534.
- [2] K.Chandrasekhara Rao and N.Subra-manian, The Orlicz space of entire sequences. INT. J. MATH. MATH. SCI. 68 (2004), 3755--3764.
- [3] K.Chandrasekhara Rao, (1978). Cesaro space of analytic sequences, Proceedings of the National Academy of Sciences, India. Section A.Vol.48; p.192-194.
- [4] K.Chandrasekhara Rao and N.Subra-manian, A subset of the space of the entire sequences, Commun. Fac. Sci Univ. Ank. Series A1 V.50.pp.55-63(2001).
- [5] K.Chandrasekhara Rao and K.S Narayanan, General Topology (Part-1), S.Viswanathan (Printers and Publishers) pvt.Ltd., Madras(1986).
- [6] R. Çolak, and M. Et, E. Malkowsky, Some topics of sequence spaces, Lecture Notes in Mathematics, Firat University Press, Elazig, Turkey, 2004.
- [7] C.Goffman and G.Pedrick, (1974), First Course in Functional Analysis, Prentice Hall India, New Delhi.
- [8] M.A, Krasnoselskii and Y.B Rutickii, Convex Functions and Orlicz Spaces, Gorningen, Netherlands, 1961.
- [9] P. K. Kamthan and M. Gupta, Sequence spaces and series. Lecture Notes in Pure and Applied Mathematics, 65. MARCEL DEKKER, INC., NEW YORK, 1981.
- [10] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J.Math.10(1971), 379-390.
- [11] M. Mursaleen, M.A.Khan and Qamaruddin, Difference sequence spaces defined by Orlicz functions, Demonstratio Math Vol.XXXII (1999), 145-150.
- [12] I. J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Phil. Soc. 100(1) (1986), 161-166
- [13] Nakano, Concave modulars; J. Math. Soc. Japan;5 (1953), 29-49.
- [14] W. Orlicz, Über Raume (L^M) , Bull. Int.Acad. Polon. Sci. A (1936), 93-107.
- [15] S.D. Parashar and B. Choudhary, S e q u e n c e spaces defined by Orlicz functions, Indian J.Pure.Appl. Math 25(4) (1994), 419-428.
- [16] W. H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25(1973), 973-978.
- [17] B.C. Tripathy, M.Et and Y. Altin, Generalized difference sequence spaces defined by Orlicz function in a locally convex space, J.Analysis and Applications, 1(3) (2003),175-192.
- [18] A.Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies ,Vol.85, North-Holland Publishing, Amsterdam, 1984.