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Abstract
Accurate estimation of wind turbine power curve has an important role in monitoring of conditioning and controlling of wind turbines in 
wind power plants. Artificial neural network (ANN) was used in this study in the prediction of horizontal axis wind turbine output power (P) 
in terms of climatic data and turbine rotational speed (Ω). Artificial neural network (ANN) involved the input parameters including the wind 
speed (V), atmospheric air temperature (T) and the rotational speed (Ω) of wind turbines which they were obtained from an operating power 
plant. According to the derived results for the testing process, minimum mean absolute percentage of error (MAPE) and maximum correlation 
coefficient (R) values were determined for an optimum rotational speed (Ω). MAPE and R values were respectively determined as 1.47% 
and 0.9991 in the case of the ANN study. These results indicated well that ANN approach provided a simple and accurate forecasting in the 
determination of wind turbine output power (P). Wind turbine power curve of a considered site can be rapidly predicted in a successful way 
with a little error under the utilization of the ANN method when the parameters of the climatic data including the wind speed (V) and the 
atmospheric air temperature (T); and as well rotational speed (Ω) of wind turbines in a wind farm are available. Thus, this method is rather 
convenient during the decision stage of new wind power plant installations. 
Keywords: Artificial neural network, Atmospheric temperature, Linear and non-linear regression, Rotational speed, Wind power, Wind speed

INTRODUCTION
Evaluation of wind turbine efficiency requires the 

wind turbine capacity factor [1]. Additionally, the turbine 
performance specification and an indication of wind turbine 
service life can be deduced from the power characteristics 
curve. Generally speaking, theoretical wind turbine power 
characteristics curves are based on ideal meteorological 
and topographical conditions. In reality, however, the ideal 
conditions for wind power generation are never realised 
in practice. The location of turbines, air density, and the 
distribution of wind speed and as well wind direction can 
each significantly affect the power characteristics curve 
[2]. Estimation of the power curve equation and related 
aerodynamic parameters have recently increased its 
validity [3]. In addition, the forecasting of the wind power 
and the planning of wind farm expansion require accurate 
computation of power characteristics curves [4,5]. 

A number of methods have been mentioned in the 
literature for forecasting wind turbine performance 
parameters over different duration of time and including 
a variety of physical models, statistical methods, hybrid 
physical‒statistical methods, artificial intelligence and 
neuro-fuzzy processing, along with more recent methods 
[6,7]. Li and Shi (2010) have made a comparative study of 
three types of neural networks, the adaptive linear element, 
back propagation and the radial basis function, enabling the 
prediction of hourly wind speed [8]. They have confirmed 
that no single neural network model is superior to the others in 
terms of its entire evaluation capability. The main advantage 
of the neuro-fuzzy model is in combining neural network 
and fuzzy logic systems, giving an increased capability in 
both areas. Fuzzy logic enables a better representation of the 
behavior of a given system by the use of a simple rule set, 
although it is unable to make use of the knowledge contained 
in numerical data [9]. In addition, it has been shown that 
artificial neural networks (ANN) are in general capable of 
training virtually any smooth nonlinear function, and a high 
degree of accuracy generally results from the application 

of ANN. Nevertheless, ANN has only limited capability in 
dealing with linguistic information. 

It has been shown that artificial neural networks (ANN) 
are in general capable of training virtually any smooth 
nonlinear function, and a high degree of accuracy generally 
results from the application of ANN. Nevertheless, a 
drawback of ANN is the limited capability in dealing with 
linguistic information. 

Horizontal axis wind turbines are the major type of 
large turbines in use today, and have received a great deal 
of attention both among researchers and in commercial 
terms [10,7]. In the present study, turbine power output 
values have been modelled in relation to hub-height wind 
speed (V), local temperature measured at the nacelle (T), 
and the rotational speed (Ω), using ANN approach. Power 
curves obtained by this modelling method can be used in 
the planning of new installations and for computation of 
total wind power generation for an existing wind farm. The 
main advantage of ANN model is to operate with fewer 
variables in forecasting of power extraction (P) from wind 
turbines. Wind turbine power (P) output can be predicted 
using required hub-height wind speed (V), local atmospheric 
temperature (T) and the rotational speed of the rotors (Ω) 
without comprehensive knowledge of the turbine operation 
or its control scheme. Furthermore, wind power (P) output 
can also be estimated satisfactorily without knowledge 
of other turbine characteristics, or meteorological and 
topographical data is the desired process of power (P) 
computation with less input variables.

MATERIALS and METHODS
Definition of artificial neural networks 
Complex, analytically ill-defined, nonlinear or stochastic 

problems can be tackled using basic computational 
operations  [11,12]. Complex problems such as non-
analytical, nonlinear, non-stationary and stochastic types can 
be solved with limited programming knowledge when ANN 
structure is used. In particular, a variety of problems can be 
solved without re-programming or other interference in the 
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program itself [13,14,15,16,17,18].
According to the literature, ANN methods include 

feed-forward neural networks (FFNN), radial-basis neural 
networks (RBNN) and generalised regression neural 
networks (GRNN). However, the back-propagation (BP) 
algorithm is the most widespread supervised training 
algorithm in multilayered FFNNs. Networks of BP algorithm 
involves information processed in the forward direction in 
a path of input layer, hidden layer and final output layer. 
The purpose of the BP network is to establish the optimum 
weight generating an output vector as close as possible to 
the target values, with accuracy determined by minimizing a 
predetermined error function [11,12,13,14]. 

A neural network comprises neurons constituting the 
basic processing elements. The back-propagation algorithm 
(BP) starts by computing output layer, since this is the only 
one for which output is available. Outputs for the intermediate 
layers are unavailable, as shown in Figure 1 [19].

Operating principle of ANNs
Modelling of the analytically impossible and complex 

problems using artificial neural networks are trained to 
eliminate the conventional approach limitations. Thus, 
this caused a significant rise on the interest focused to 
ANN method. Researches utilize the ANN method in 
many scientific areas including engineering, mathematics, 
economics, psychology, medicine, meteorology, etc. Besides, 
forecasting of mineral exploration sites, load predictions in 
electricity and thermal science, robot controlling and other 
branches of science use ANN method successfully. 

A neuron is the basic processing element considering 
a neural network. Mathematical expressions defined in 
Equation 1 and 2 present a neuron, j. 

∑
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0        (1)
As well,

)( jjj UY θϕ −=       (2)

The upper limit of summation sign presented in Equation 
(1), p gives the amount of sources nodes in the input layer or 
the number of output layer neurons. Set of inputs or signals 
(X) having a specific weight (W) are received by the artificial 
neuron and a weighted average of them (U) is calculated by 
the summation function. Latter, some activation function (
ϕ ) is used to generate an output (Y). Threshold (θ ) usage 
has the influence of an affine transformation application 
defined on the output (u) of the linear combiner. A function 
referred as sigmoid logistic non-linear is presented by 
Equation 3 [20].
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RESULTS and DISCUSSION
Study region, data and turbine technical specifications 
The data used in the present study were taken from a 

wind power plant (WPP) which is in current operation. The 
altitude of this wind farm is 400 m above sea level. By the 
year 2008, the wind farm was in operation and comprised 17 
identical wind turbines, each having an equal rated capacity 
of 2 MW. The hub-height of the identical wind turbines is 
67 m, and the rotor diameter 80 m. The total swept area 
of a single wind turbine is thus 5027 m2. The technical 
specification of identical wind turbines is given in Table 1. 

The turbines operate at a cut-in speed of 4 m/s, a cut-out 
speed of 25 m/s and a nominal wind speed of 15 m/s. The 
present wind turbines are pitch-regulated upwind turbines 
with active yaw and a three-bladed rotor.

The turbines employ the OptiTip and variable speed 
functions, making it possible to maintain the rated power 
at very high wind speeds, regardless of air temperature and 
density. The OptiSpeed generator allows the turbine rotor 
speed to run at rotational speeds ranging from 9 rpm to19 
rpm. The OptiTip system can be employed at low free-
stream wind speeds, and the variable speed function can 
therefore maximise the output power (P) by optimising the 
rotational speed (Ω) and pitch angle. 

Five wind turbines, T1, T2, T3, T4 and T5, were selected 
for the present study. For each of the turbines, the data taken 
from the WPP included power output (P, kW), hub-height 
wind speed (V, m/s), atmospheric air temperature (T, ºC) 
and turbine rotational speed (Ω, rpm). Table 2 illustrates the 
relationship between the input and output parameters and 
their correlation with wind power output (P). 

It is obvious from the table that hub-height wind 
speed, V, is the most effective factor in wind power output 
(P) forecastig. In addition, V has a directly proportional 
relationship to wind power output (P). On the other hand, 
an increase in atmospheric air temperature (T) inversely 
affects wind power output (P), since an increase in T results 
in expansion of the atmospheric air. This means that a lower 
mass flow rate ( m ) of air interacts with the rotor blades. 
Furthermore, the absolute correlation ratio with atmospheric 
air temperature (T) is lower in comparison with hub-height 
wind speed (V). The absolute magnitude of the correlation 
ratio of rotational speed (Ω) with the wind power output 
(P) is smaller when compared to the hub-height wind speed 
(V), but greater than the absolute value of the atmospheric 
air temperature, T. As can be seen from Table 2, when the 
minimum value of the wind power output (P) was 2.63 
kW, the maximum output power (P) obtained was 2000.63 
kW. The minimum and maximum values of hub-height 
wind speed (V) were 2.87 m/s and 24.50 m/s, respectively. 
The data also revealed that while the average minimum 
atmospheric air temperature (T) for the five turbines was 
6 ºC, the maximum value was reported as 27 ºC. On the 
other hand, the average rotational speed (Ω) of five turbines 
varied, with a minimum value of 12.43 rpm and a maximum 
of 16.4 rpm. 

Figure 1. A schematic representation of a multi-layer perceptron
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Table 1. Technical properties of wind turbines
Equipment Properties
Rotor

Diameter 80 m
Area swept 5027 m2

Nominal revolutions 16.7 rpm
Operational interval range 9-19 rpm

Number of blades 3
Power  regulation Pitch/OptiSpeed

Air brake Full blade pitch by three separate hydraulic pitch cylinders

Tower
Hub-height 67 m

Operational data
Cut-in wind speed 4 m/s

Nominal wind speed 15 m/s
Cut-out wind speed 25 m/s

Generator
Type Asynchronous with OptiSpeed

Rated power output 2000 kW
Operational data 50 Hz, 690 V

Gearbox
Type Planet / parallel axles

Control

Type

Microprocessor-based control of all the turbine functions 
with the option of remote monitoring. Output regulation 

and optimization via OptiSpeed and OptiTip pitch 
regulation

Table 2. Interval range of variables and related statistical parameters

Input and 
output 

variables
Unit Min Max Mean Standard 

deviation
Correlation 

with P

P kW 2.63 2000.63 1187.23 679.32 1.000
V m/s 2.87 24.50 12.48 5.57 0.896
T oC 6.00 27.00 17.08 4.47 ‒0.640
Ω rpm 12.43 16.40 14.67 1.58 0.703

The data was accumulated in the year 2013 and included 
data for the entire year. Measurements were taken over 
periods of 10 minutes. The data were initially composed 
of 52560 measurements (365 × 24 × 6 quantities) for each 
parameter related to V, T, Ω and P. Initially, original data 
for rotational speed, Ω was classified within limit ranges 
such as 1.00‒2.99 [rpm], 3.00‒4.99 [rpm], 5.00‒6.99 [rpm], 
7.00‒8.99 [rpm], 9.00‒10.99 [rpm], 11.00‒12.99 [rpm], 
13.00‒14.99 [rpm], and 15.00‒16.99 [rpm]. The probability 
distribution of rotational speed, Ω was calculated as shown 
in Figure 2. The average value in terms of rotational speed, Ω 
corresponding to each class mark of probability distribution 
for five turbines was calculated. Hence, average class marks 
of probability distribution considering all turbines were 
calculated as 2.02 [rpm], 4.10 [rpm], 6.05 [rpm], 8.08 [rpm], 
10.10 [rpm], 12.44 [rpm], 13.94 [rpm], and 16.14 [rpm] in 
terms of rotational speed, Ω. Accordingly, designated class 
marks, including multi-data, were then performed for all 
turbines, and parameters such as V, T and P were defined 
with respect to each class mark of rotational speed, Ω. In 
this way, in terms of rotational speed (Ω), an average value 

corresponding to each class mark involved variation in the 
values of parameters such as V, T and P.

Pre-filtering was performed in order to eliminate power 
data given at zero or negative wind power (P) values. These 
improper data probably arose from rapid alterations in wind 
speed (V), vortices forcing a change in position of the rotor, 
or maintenance of the wind turbines. For these reasons power 
generation could not be assessed at high wind speeds. Thus, 
the probability density of rotational speed, Ω, corresponding 
to a value of 0, i.e. unrotational case was 22%. It should 
be observed that these data were omitted from the present 
computations. 

As shown in Figure 2, it was satisfactory that half the 
data were observed, corresponding to a nominal rotational 
speed (Ω) of the rotor of 16.14 rpm. Also, pre-filtered data 
involving rotational speeds (Ω) below 12.44 rpm were 
filtered a second time, since data within the rotational speed 
range 2.02 rpm ≤ Ω ≤ 10.10 rpm (Ω) corresponded to only 
2% of the total data. Finally, the remaining 76% of the data 
were used for the forecasting ANN model.
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Figure 2. Probability density representation of rotational 
speed (Ω)

ANN forecasting results
For the development of forecasting ANN model, the total 

of 660 data for each parameter was used. This data set was 
divided into two subsets described as training and testing. 
The training data set included 532 data covering turbines 
T1, T2, T3 and T4, representing approximately 80% of the 
total data. The testing data set included only the turbine T5, 
consisting of 128 data representing approximately 20% of the 
total. So, wind turbine power output (P) can be characterized 
as a function of V, T and Ω. The relationship between wind 
turbine power output (P) and these independent variables 
can be expressed as:

( )Ω= ,, TVfP    (4)

The selected independent variables determined the 
structure of the forecasting ANN model and influenced the 
results of the model and the weighted coefficient, W. For 
this reason, the selection of the most suitable independent 
variables becomes a very important factor in forming a 
satisfactory forecasting ANN model. The ANN architecture 
used in the study is shown schematically in Figure 3. As seen 
in this figure; V, Ω and T were used as input variables. The 
parameters V and T are the most important climatic factors 
influencing performance of wind turbine power output (P), 
thus it is the reason that they considered. These parameters 
are readily available both in this region and all over the 
world. Moreover, they can easily be obtained and measured 
and in any considered region of the world. 

In order to determine the optimal network architecture, 
various structures of forecasting models were designed using 
MATLAB software. For this reason, the predictions were 
performed by considering a different number of hidden layer 
neurons between 1 and 15. The ANN model was assessed by 
testing a data set not used during the training process. The 
best result was obtained by working with different training 
algorithms, leading to the adoption of the Levenberg–
Marquardt (LM) learning algorithm.  In the model of ANN 
formed, neurons in the input layer have no transfer function. 
Logistic sigmoid transfer function (logsig) and linear 
transfer function (purelin) were applied in the hidden layers 
and output layer of the network as an activation function, 
respectively. The ANN architecture consists of an input layer, 
an output layer and one hidden layer with nine neurons. In 
the training procedure, the maximum epoch number was set 
to 200, and the mean square error goal was set at 5 × 10‒5. 

The structure used in this study had an input layer, a 
hidden layer and an output layer consisting of 3, 9 and 1 nodes, 

respectively. While four turbines were used for training the 
MATLAB simulation, data from one turbine was considered 
adequate for testing the results. The general construction of 
the MATLAB codes, consisting of Levenberg‒Marquardt 
back-propagation algorithm and logsic (logistic function) 
and purelin (linear transfer) functions, were used in the 
study. 

The prediction model was trained and tested to compare 
and evaluate the performance of ANNs. Figures 4 and 5 
present the comparison between prediction of ANN and 
measured results for the training data set. According to the 
results derived, based on the testing data set, the scatter 
diagrams of the network predictions against the actual 
values of power output (P) were drawn in order to evaluate 
the performance of the ANN model. As seen in Figures 6‒8, 
the results of the prediction were in fairly close agreement 
with the actual values of power output (P), especially in the 
case of 16.14 rpm rotational speed. This indicated that used 
ANN artificial intelligence model can be a useful tool for 
accurate forecasting wind turbine power output (P); based 
on hub-height wind speed (V), atmospheric air temperature 
(T) and rotational speed, Ω. 

Figure 3. Schematic representation of the ANN frame-work used in 
the present study denoting of layers and nodes

Figure 4. Comparison between prediction of ANN and measured 
results for the training data set in terms of studied data

Figure 5. Comparison of actual and predicted power, P values for 
training data set
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Table 3. MAPE and R results of the forecasting model estimations

Ω

Training process Testing process

MAPE (%) R MAPE 
(%) R

T1 T2 T3 T4 T1 T2 T3 T4 T5 T5
12.44 21.35 30.00 13.88 21.00 0.9762 0.9866 0.9863 0.9775 16.94 0.9901
13.94 6.37 6.63 4.83 10.56 0.9901 0.9928 0.9914 0.9951 6.48 0.9898
16.14 2.05 1.44 1.83 1.54 0.9980 0.9994 0.9993 0.9995 1.47 0.9991
whole 7.78 10.58 5.68 8.57 0.9958 0.9958 0.9967 0.9963 6.31 0.9970

Error results of ANN referenced to actual power 
output (P) 

Table 3 gives the mean absolute percentage error (MAPE) 
and correlation coefficient (R) results for the training and 
testing process depending on the forecasting computations 
for the actual data set of power output (P). According to the 
results obtained from the testing process, the interval range 
of MAPE was 1.47‒16.94% for rotational speeds (Ω) of 
12.44 rpm ≤ (Ω) ≤ 16.14 rpm. The corresponding interval 
range of correlation coefficient, R values for this interval of 
rotational speed (Ω) was 0.9898 ≤ R ≤ 0.9991. The MAPE 
and R results for rotational speeds (Ω) over the whole data 
of 12.44, 13.94, and 16.14 rpm rotational speeds were 
determined as 6.31% and 0.9970, respectively. 

Table 3 reveals that accurate forecasting estimates were 
obtained especially, with 16.14 rpm of optimum rotation 
(Ω). When the whole data set of the three rotational cases 
is taken into consideration, it is seen that the MAPE result 
was insufficient in the forecasting ANN model. On the other 
hand, in terms of the correlation coefficient (R), the values 
showed acceptable results for each classes of rotational speed 
(Ω) as well considering whole classes of rotational speeds, 
Ω. Thus, the overall correlation coefficient (R) results of the 
estimations was determined a value of 0.9970. 

During training of the program, MAPE values were 
higher for optimum rotational speed, apart from Ω = 16.14 
rpm when compared with the actual power values of the wind 
turbines studied as presented in Table 3. Considering the 
results of the testing stage, ANN results clearly revealed that 
the estimated power output (P) values were all among the 
lower and upper values of MAPE according to the training 
forecasting results obtained from the four turbines. There 
was a slight difference between the results of correlation 
coefficient (R) in ANN estimations according to different 
classes of rotational speed (Ω). Both training and testing data 
indicated higher results of correlation coefficient (R). The 
comments were therefore based on the MAPE results. 

The MAPE results did not indicate the same degree of 
success of the method, regardless of its value during the 
training stage, since the aim of the training was to obtain 
the true logic in terms of the computer program to present 
good estimates at the testing stage. MAPE values remained 
higher in training stage of estimations at 12.44 rpm; on the 
other hand, at 13.94 rpm and 16.14 rpm resulted MAPE at 
lower values during the training process. In addition, when 
whole classes of rotational speeds (Ω) are considered, ANN 
estimations of T3 turbine during training stage performed 
the best forecasting result based on MAPE. Estimation of 
T3 turbine also showed the best performance compared 
to others in terms of the overall correlation coefficient (R) 
taking whole classes of rotational speed (Ω) into account. 

These results indicated that the performance of the ANN 
model was generally useful tool for accurate forecasting 

wind turbine power output, P estimation. Estimations with 
respect to the actual power output (P) values was illustrated 
in Figures 6‒8 using scatter diagrams to demonstrate the 
results of predictions based on ANN model especially for 
optimum rotational (Ω) case was in fairly close agreement 
with the corresponding actual wind turbine power output (P) 
data.     
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Figure 6. Comparison of actual power (P) and the forecasted com-
putational results at 12.44 rpm
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Figure 7. Comparison of actual power (P) and the forecasted com-
putational results at 13.94 rpm
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Figure 8. Comparison of actual power (P) and the forecasted com-
putational results at 16.14 rpm

CONCLUSIONS
In the present study, the power output (P) of a horizontal 

axis wind turbine was predicted using ANN tool and 
compared the results with the actual average values obtained 
from five turbines. The results obtained from this forecasting 
model compared to actual data of power output, P were in 
good agreement especially for optimum rotational speeds 
(Ω). According to the prediction model, the MAPE values 
at rotational speeds (Ω) of 13.94 rpm and 16.14 rpm were 
found to be 6.48% and 1.47%, respectively. For the testing 
process, the maximum value of correlation coefficient (R) 
was obtained for the optimal rotational speed (Ω) conditions 
of the turbine, estimated as R=0.9991. Similarly, the 
MAPE values obtained at the optimum rotational speed 
(Ω) of 16.14 were better than those at rotational speeds of 
12.44 and 13.94 rpm. Consequently, the advantage of this 
forecasting ANN model is that wind turbine power output 
(P) can be predicted, regardless of detailed knowledge of 
turbine operations and topographical data, and can provide 
successful results when the required hub-height wind speed 
(V), atmospheric air temperature (T) and turbine rotational 
speed (Ω) data are available. Furthermore, the wind turbine 
power curve of any site can be successfully estimated with 
a high degree of accuracy using this ANN estimation model 
suggested utilizing the wind speed (V), atmospheric air 
temperature (T) and rotational speed (Ω).
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