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Abstract
The energy eigenvalues and wave functions of the quantum pseudodot systems formed at pseudo-harmonic potential containing both quantum 
dot potential and quantum antidot potential are calculated in one, two and three dimensions. For the present case, all three systems form an 
exactly solvable system and we found exact solutions of the energy eigenvalues and normalized wave functions for the three systems. Ground 
states of energy eigenvalues and wave functions are found and the results are analyzed for some special cases.
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INTRODUCTION
Since the discovery of nanotubes [1] and nanoballs [2], 

studies on nanostructures have been increasingly continued. 
In parallel with nanofabrication technology, both experi-
mental and theoretical studies on new nanostructures such 
as dots, antidots, pseudodots, wells, wellwires and antiwells 
have been carried out continuously by researchers for a few 
decades.

Over the past few years, there has been an abundance 
of research on two-dimensional (2D) quantum pseudodot 
systems (QPS’s) constructed by a pseudo harmonic potential 
(PHP) that includes both harmonic quantum dot and antidot 
potential. Researches on 2D QPSs have been intensified on 
optical properties [3-9], polaron efects [13-18], impurity 
states [6, 10, 14], magnetic effects [4, 5, 11, 19] and 
Aharonov-Bohm (AB) flux field effects [4, 11, 19]. In one 
of these, Cetin investigates the energy spectrums and the 
corresponding wave functions of an electron confined by 
a PHP both including harmonic dot and antidot potentials 
in the presence of a strong magnetic field together with an 
AB flux field [19]. Rezaei et al. theoretically investigated 
the optical absorption coefficient changes and refractive 
index changes associated with intersubband transitions in 
a 2D QPS under the influence of a uniform magnetic field. 
In this regard, they examined the electronic structure of the 
pseudodot system using the one-band effective mass theory, 
and calculated linear and nonlinear optical absorption 
coefficient and refractive index changes by means of the 
compact density matrix approach [4]. Khordad studied 
the direct interband transitions in QPS under the influence 
of an external magnetic field. He obtained an analytical 
expression for the light interband absorption coefficient 
and threshold frequency of absorption as the functions of 
applied magnetic field and geometrical size of QPS. Besides, 
he studied the absorption threshold frequency at small and 
high applied magnetic field and also as a function of size of 
QPS [5]. Ikhdair and Hamzavi calculated the energy levels 
and the wave functions of an electron confined in a 2D 
pseudoharmonic quantum dot potential under the influence 
of temperature and an external magnetic field inside dot and 
AB field inside a pseudodot by using the Nikiforov-Uvarov 
method. They computed the exact solutions for energy 
eigenvalues and wave functions as functions of the chemical 

potential parameters, applied magnetic field strength,
AB flux field, magnetic quantum number and temperature 

[11]. Rani and Chand studied the energy spectrum of a 
quantum dot system consisting of an electron confined by a 
three dimensional parabolic confinement potential which is a 
combination of harmonic, coulomb, linear and an-harmonic 
potential terms [12]. Liu et al. [20] theoretically investigated 
linear and nonlinear optical absorption coefficients and 
refractive index changing with the 3D ring-shaped PHP.

While many works have been done on 2D QPS, there 
has been dearth of studies on 1D and 3D QPSs. 3D QPSs are 
especially important for optical transitions, polaron effects, 
impurity effects and magnetic effects in bulk materials and 
they need further investigation.

The paper is organized as follows. In Sect. 2, we first 
describe a one-dimensional quantum pseudodot structure 
and solve exactly the related Schrödinger equation and 
calculate the energy spectrum and wave functions. In Sect. 
3, we solve the Schrödinger equation which corresponds 
to the 2D QPS and find the energy eigenvalues and the 
wave functions analytically. In the fourth section, the radial 
Schrödinger equation which determines the 3D QPS is 
solved and the energy eigenvalues and the wave functions 
are found. In the last section, energy eigenvalues and wave 
functions associated with 1D, 2D and 3D QPS are analyzed 
for the ground states and some special cases.

QUANTUM PSEUDODOT SYSTEM IN 
1D

Within the effective-mass approximation, we write the 
one-dimensional Schrödinger Equation for a particle mass  
and energy  trapped in a 1D pseudoharmonic potential,
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                                      (1)
where ( )V x   potential is 1D PHP that includes both 

harmonic quantum dot potential and antidot potential and 

given by 
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 with 0V  chemical potential 

of electron gas and 0x  zero point of the pseudoharmonic 

potential in 1D as illustrated in Figure 1 as a function of 
0

x
x  
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for a special value 0 0.5V meV= . Substituting ( )V x  into the 
Eq. (1), we obtain

	
* * * 22
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2 ( 2 ) 2 2 1 0m E V m V m V xd x
dx x x

ψ
 +

+ − − = 
     (2)

by replacing x  with 2
1D xρ α=  where 

*
0

1 2 2
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2
D

m V
x

α =
 , we 

obtain

Figure 1. Pseudo harmonic potential in one dimension as a function  

for a special value 0 0.5V meV=
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where in Eq. (3), we use abbreviations 
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and 
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1 1 2

2( 1)D D
m V xβ β − =
 . In order to find suitable solution for 

the differential equation in Eq. (3), it is useful to utilize the 
limits of 0ρ →  and ρ →∞ . For ρ →∞ , the term / 4ρ is 
dominant and one gets the equation
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In this case, the solution the Eq. (4) is 

/2 /2( ) Ae B eρ ρψ ρ −= + . Here we can ignore the second 
term because it becomes infinite as ρ →∞ .

In the other asymptotic limit ( 0ρ → ), one gets the 
equation
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Hence, the solution of the Eq. (5) is 
1 1

1 1 ( 1)
2 2( ) D DC D
β β

ψ ρ ρ ρ
− −

= + . Here, we can disregard the 
second term, since it becomes infinite as 0ρ → .

With the solution of the asymptotic cases, we try the 
substitution
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After inserting Eq. (6) into Eq. (3)
	
2

2

( ) 1 ( )( ) 1 ( ) 0
2D

d u du nu
d d

ρ ρρ β ρ ρ
ρ ρ

 + − + − + =             (7)

where 1 11
4 2

D Dn λ β−
= −  is an integer. To find the energy 

eigenvalue of the 1D pseudodot, one can use abbreviations 
used in Eq. (3) and Eq. (7) 
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are used. Differential equation in Eq. (7) is known as 
Associated Laguerre differential equation and its solution is 

Associated Laguerre Polynomials 
1

1
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.
The normalized wave functions of the pseudodot system 

in 1D are
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where 2
1D xρ α= with 
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, ( )nΓ  is the 

Gamma function and n  is the quantum number which must 
be an integer ( 0,1, 2,3,...n = ). 

QUANTUM PSEUDODOT SYSTEM IN 
2D

The 2D Schrödinger equation for a particle mass  and 
energy  trapped in a 2D PHP is
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 is 2D PHP that includes

quantum dot and antidot potential. A 2D PHP potential is 
illustrated in Figure 2 at an arbitrary unit. Substituting this 
potential into the Eq. (10) and let us consider the wave 

function in the form of 
1( , ) ( )
2
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Figure 2. Pseudo harmonic potential in two-dimensions at an ar-
bitrary unit

where m  is the magnetic quantum number. If we change 

(11)
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the variable r  to 2
2Drρ α=  with 
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, we 
obtain
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substitution for Eq. (12), it is convenient to use the limits 
of 0ρ →  and ρ →∞ . For ρ →∞ , the term / 4ρ  is 
dominant and one gets the equation
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in which case the solution of Eq. (13) is 
/2 /2( ) Ae B eρ ρψ ρ −= + . We have to exclude the second 

term, because it becomes infinite as ρ →∞ .
For 0ρ → , the dominant terms in Eq. (12)
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Solution of Eq. (14) is 
2 2
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−
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. We have to exclude the second term, because it becomes 
infinite as 0ρ → .

As in our treatment of the 1D case, a solution which 
covers the whole region
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Substituting Eq. (15) into Eq. (12), we have
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where 2 22
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( 0,1, 2,...n = ). Differential equation in Eq. (16) is 
Associated Laguerre Differential Equation and its solution is 
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 is used. The wave functions of

 the pseudodot system in 2D are
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where 2
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the Gamma Function.

QUANTUM PSEUDODOT SYSTEM IN 
3D	

Radial part of the Schrödinger equation for a particle 
mass *m  and energy E  trapped in a 3D PHP is given by
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It is convenient to make a change of variable 
2

3Drρ α=  

with 
*

0
3 2 2

0

2
D

m V
r

α =


, the equation then reads 
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where we have introduced parameters 
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where   is the angular momentum quantum number. One 
can solve Eq. (20) in such a familiar way that we consider 
first the behavior the equation for the large ρ . In this case, 
the only terms that remains in the equation
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and the solution, which behaves properly at infinity, is 
/2( )R e ρρ −� . Secondly, for small ρ , the dominant terms 

in Eq. (20)
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And the solution of Eq. (22) is 3 3
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which covers the whole region. After substituting this 
solution into the Eq. (20), we have
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solutions are Associated Laguerre Polynomials 3
1
2 ( )D

nL
β

ρ
+

.
To find the energy eigenvalue of the 3D QPS, we may 

use abbreviations used in Eq. (20) and Eq. (24)
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where ( , )mY θ φ  are spherical harmonics, 

3
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 are used.

DISCUSSION
In this paper, we calculated exact solutions for the 

energy spectrums and the normalized wave functions 
of QPSs in 1D, 2D and 3D. Energy spectrum of the 1D 

QPS is equidistant with the spacing 12 Dω
 and has a 

value in the ground state ( 0n = ), the zero point energy 

0 1 1 0
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 . To find the ground state wave 

function of 1D quantum pseudodot system one can put 
0n =  in Eq. (9)
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Energy spectrum of the 2D QPS depends on principal 
quantum number n  and magnetic quantum number m
. The ground state energy of the 2D QPS has a value of (

0n =  and 0m = ) 0,0 2 2 0( 1) 2D DE Vω β= + −  (the 

zero point energy) with 
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. In order to
 obtain the ground state wave function of 2D QPS one can 
take 0n =  and 0m =  in Eq. (18)
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This results for energy eigenvalues and wave functions 
agrees with other 2D QPS in the literature [5, 19]. 

In 3D case, energy spectrum of the 3D QPS depends 
on principal quantum number n  and angular momentum 

quantum number  . There are 2 1+  times degeneracy 
on magnetic quantum number m  because the energy 
spectrum does not depend on the magnetic quantum number
m . When the magnetic field is applied, the degeneracy 
of the energy eigenvalues is removed. The ground state 

energy of the 3D QPS is 0,0 3 3 0
3 2
2D DE Vω β = + − 

 
  with 
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 . In the case of 3D, the ground 

state wave function for QPS is
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The ground state energies  of 1D, 2D and 3D QPS are 
plotted in Figure 3 as a function of the zero point 0r  of the 
PHP. In Figure 3, the ground state energy of the 1D QPS is 
represented by a solid line, the ground state energy of 2D 
QPS is indicated by dashed line, and the ground state energy 
of the 3D QPS is represented by dash dotted line. Figure 
3 is drawn using some special values ( 0 0.5V meV= and 

* 0.067 em m=  where em  is rest mass of the electron). 
As shown in Figure 3, as the dot size increases, the ground 
state energies decrease for all three systems. The ground 
state energy of the 2D QPS is close to the ground state 
energy of the 3D QPS where the zero point of the PHP is 
small, while it is closer to the ground state energy of the 1D 
QPS where the zero point of the PHP is large. For the zero 
value of the principal quantum number n , energies of the 
three-dimensional quantum pseudodot system and energies 
of the three-dimensional harmonic oscillator with the same 

frequency , 3 3
32
2n D DE nω β  = + +    

  are shown 

in Figure 4 as the function of the angular momentum 

quantum number   for special values 0 0.5V meV=

, * 0.067 em m=  and 0 100r nm= . In Figure 4, the 
3D QPS energies and 3D harmonic oscillator energies are 
denoted by dots and diamonds, respectively. For all values 

of the angular momentum quantum number  , the energy 
of the 3D QPS is lower than the energy of the 3D harmonic 
oscillator. The intervals between the energies increases with 
increasing value of angular momentum quantum number  .
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Figure 3. The ground state energies of 1D, 2D and 3D quantum 
pseudodot systems as a function of the zero point  of the pseudo har-

monic potential for special values 0 0.5V meV=  and * 0.067 em m=  

where em   is the rest mass of the electron.

Figure 4. Energies of the 3D quantum pseudodot system and 
energies of the 3D harmonic oscillator with the same frequency as 
the function of the angular momentum quantum number l for special 

values 0 0.5V meV= , * 0.067 em m=  and 0 100r nm=  where  is the 
rest mass of the electron.
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