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Abstract
In	this	study,	the	reliability	based	double	standard	model	(RBDSM)	was	proposed	to	address	the	travel	time	uncertainty	associated	with	the	

determination	of	the	coverage.	This	new	covering	model	was	applied	to	solve	the	ambulance	location	problem	of	the	province	of	Sivas,	Turkey.	
The	reliability	analyses	were	performed	between	all	demands	as	a	function	of	the	fuzzy	shortest	travel	time	and	the	fuzzy	target	travel	time.	The	
results	indicate	that	the	fuzzy	travel	times	may	be	appropriate	to	handle	the	uncertainty	investigated	here	and	have	a	good	potential	to	be	used	for	
the ambulance location problems.
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INTRODUCTION

An	 emergency	medical	 service	 (EMS)	 which	 aims	
to	 reduce	mortality,	 disability	 and	 suffering	 in	 persons	
[1,2]	requires	locating	a	limited	number	of	ambulances	
at	appropriate	points	in	order	to	provide	a	quick	response	
to an emergency situation. Covering models are the 
most	 widespread	 location	 models	 for	 formulating	 the	
ambulance location problem in the literature [3-5]. The 
objective	of	the	covering	models	is	to	provide	adequate	
coverage	 to	 the	 demand	 points.	A	 useful	 extension	 of	
the basic coverage models is the double standard model 
(DSM).	 This	 model	 seeks	 to	 maximize	 the	 double-
covered	demand	points	within	 two	 time	 limits	 [6],	one	
to	 cover	 the	whole	 demand	 area	 and	 another	 to	 cover	
part	 of	 it.	 The	 concept	 of	 coverage	 can	 be	 explained	
that a demand point is considered covered by an 
ambulance	location	point	if	the	travel	time	between	the	
two	 points	 is	 less	 or	 equal	 to	 a	 standard	 arrival	 time.	
However,	 in	 real-life	 applications,	 the	 difficulty	 in	 the	
accurate	estimation	of	expected	coverage	arises	from	the	
uncertainty surrounding the travel time [7, 8]. Hence, 
the	 incorporation	 of	 the	 quantified	 uncertainty	 of	 the	
travel time into a covering model is important in order 
to	provide	an	accurate	estimation	of	the	coverage.	Travel	
time	reliability	is	a	useful	measure	for	the	quantification	
of	 the	 travel	 time	 uncertainty	 [9,	 10].	 This	 reliability	
measure is the probability that the destination can be 
reached in a time less than some threshold value and 

it	 concentrates	 on	 a	 particular	 link	 or	 a	 set	 of	 links	
representing	 any	 path	 within	 a	 transportation	 network	
[10]. Travel time reliability can be estimated by Monte 
Carlo	 simulation	 which	 is	 a	 common	 approach	 to	
reproduce	 stochastic	 variables	 preserving	 the	 specified	
distributional	 properties	 [11].	 However,	 it	 is	 often	
difficult	 to	 obtain	 adequate	 statistical	 information	
for	 application	 of	 this	method.	 In	 such	 case,	 fuzzy	 set	
theory	 [12,	 13]	 can	 provide	 a	 useful	 tool	 for	 directly	
working	 with	 experts’	 knowledge	 [14,	 15].	 Fuzzy	 set	
theory	 has	 been	 successfully	 used	 in	 different	 areas	
for	 solving	 complex	 and	 uncertain	 problems	 [16-19].	
Although,	 many	 covering	 models	 have	 been	 extended	
to the probabilistic models to capture the uncertainty in 
the	coverage	problem	[20-22],	 the	fuzzy	set	 theory	has	
received little attention in ambulance location problems. 

In	this	study,	the	DSM	was	extended	to	a	reliability	
based	double	 standard	model	 (RBDSM).	The	RBDSM	
evaluated	the	travel	time	reliability	of	each	path	between	
demand	 points	 in	 the	 province	 of	 Sivas,	 Turkey.	 The	
Monte	 Carlo	 simulation	 method	 was	 used	 to	 estimate	
the travel time reliability indices in the model. Travel 
time	information	between	all	of	the	demand	points	were	
approximated	 by	 using	 fuzzy	 membership	 functions,	
since	the	sufficient	data	about	the	EMS’	operations	were	
not available. Thus, this study also aimed to investigate 
the	 potential	 use	 of	 fuzzy	 set	 theory	 in	 the	 ambulance	
location studies.
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MATERIALS AND METHODS

Reliability Based Double Standard Model
The	 RBDSM	 has	 the	 same	 objective	 function	 and	

constraints	as	the	DSM	except	for	the	constraints	related	
to	 the	 coverage	 requirements,	 as	 detailed	 follows:	 The	
DSM	[6]	defines	two	coverage	standards	as	r1 and r2	with	
r1 < r2.	In	the	DSM,	the	objective	function	is	to	maximize	
the	demands	covered	twice	within	r1,	while	all	demands	
must	 be	 covered	 at	 least	 once	within	 r2.	The	 definition	
of	the	coverage	in	the	DSM	is	that	 the	demand	point	is	
covered	if	it	is	within	the	target	time	or	distance,	otherwise	
it	 will	 not	 be	 covered.	 However,	 this	 deterministic	
definition	 of	 the	 coverage	 is	 unrealistic	 because	 of	 not	
taking	 into	account	 the	 travel	 time	uncertainty	 [7].	The	
RBDSM	is	proposed	to	address	this	problem:	A	demand	
point ∈i v  is said to be covered by site ∈j w 	 if	and	
only	if	the	travel	time	reliability	between	i and j is equal 
to or higher than the desired reliability levels β1 and β2 
: Pij (tij – rij ≤ 0) ≥ β1 and β2	with	β2 < β1. Thus, every 
demand	point	 is	 covered	or	not	by	 the	measures	of	 the	
reliability. Where, tij and rij are the shortest travel time 
(STT)	 and	 target	 travel	 time	 (TTT)	 between	 i and j, 
respectively. Pij (tij – rij ≤ 0) is the travel time reliability 
between	 i and j.	 The	TTT	 is	 defined	 as	 the	 acceptable	
travel	 time	 for	 ambulance	 response	 to	 an	 emergency	
incident. Let { }1

i ij ij ij 1w = j  w : P (t - r 0)  b∈ ≤ ≥
and { }2

i ij ij ij 2w = j  w : P (t - r 0)  b∈ ≤ ≥ 	 be	 the	 sets	 of	
potential location sites covering demand point i	within	
β1 and β2, respectively. The binary variable xi

k is equal 
to	1	if	and	only	if	the	demand	at	point	 ∈i v  is covered 
k times	within	β1	reliability	level.	The	objective	function	
maximizes	the	demand	covered	twice	within	β1:
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Where, di	is	the	demand	of	point	i the integer variable  
yj	denotes	 the	number	of	ambulances	 located	at	 ∈j w
, p	 is	 the	 number	 of	 available	 ambulances,	 pj is the 
maximum	number	of	ambulances	at ∈j w .  Constraint 
(2)	 expresses	 that	 all	 demand	 is	 covered	 within	 β2. 
Constraint	(3)	represents	a	proportion	ά	of	the	demand	is	
covered.	The	left	hand	side	of	constraint	(4)	denotes	the	
number	of	ambulances	covering	point	i	within	β1,	while	
the	right-hand	side	is	equal	to	1	if	i	is	covered	once	within	
β1,	 and	 equal	 to	 2	 if	 it	 is	 covered	 at	 least	 twice	within	
β1.	Constraint	(5)	states	that	point	i cannot be covered at 
least	twice,	if	it	is	not	covered	at	least	once.	In	Constraint	
(7),	pj can be set as 2 since an optimal solution using this 
upper	bound	always	exists.	

Figure 1. 	Demand	points	of	the	province	of	Sivas
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Table 2. The	optimum	solutions	of	the	RBDSM

b1

(%)

Coverage

Optimum solutionDemand (%)

80 283233 100 36-44-45-46-58-60

81 281254 99.30 36-44-45-46-58-59

82 266723 94.17 48-50-54-58-59-60

83 219764 77.59 36-45-53-55-58-60

84 100750 35.57 35-36-44-47-59-60

85 30313 10.70 41-44-45-56-58-59

Figure 3. The	results	of	the	Monte	Carlo	simulation	for	
the	path	between	the	points	16	and	3

Implementation of the RBDSM 
In	this	study,	the	RBDSM	was	applied	to	the	province	

of	Sivas,	Turkey.		The	province	is	located	at	the	eastern	
part	 of	 the	 Central	Anatolian	 region	 of	 Turkey,	 with	 a	
surface	area	of	35.712	km2	and	a	population	of	283233	
inhabitants.	It	is	distributed	among	60	zones	(Figure	1).	It	
was	assumed	that	each	zone	represents	a	potential	demand	
point,	as	well	as	a	potential	ambulance	location	site.	The	
values	of	ά, β1 and β2	were	taken	as	0.75,	0.80	and	0.70,	
respectively.	The	number	of	available	ambulances	in	the	
province	was	 limited	 to	 6	 and	 the	 upper	 bound	 on	 the	
number	of	ambulances	per	site	was	set	to	1.

The	 STT	 and	 TTT	 were	 evaluated	 in	 linguistic	
variables	 of	 “very	very	 low”	 (VVL),	 “very	 low”	 (VL),	
“low”	(L),	“medium”	(M),	“high”	(H),	“very	high”	(VH),	
“very	 very	 high”	 (VVH).	 These	 linguistic	 terms	 were	
expressed	 by	 triangular	 fuzzy	 numbers	 for	 each	 of	 the	
variables	and	fuzzy	shortest	travel	time	(FSTT)	and	fuzzy	
target	 travel	 time	 (FTTT)	 were	 identified	 as	 shown	 in	
Figure	2.	The	linguistic	expressions	about	them	between	
all	demand	points	were	obtained	from	the	opinions	of	10	
ambulance	drivers.	Table	1	shows	the	linguistic	terms	of	
the	drivers’	opinions	between	some	points,	as	an	example.	
Their	corresponding	fuzzy	numbers	were	then	aggregated	
into	one	fuzzy	number	for	each	of	the	fuzzy	variables.	The	
mean	operator	[23]	was	used	as	the	aggregation	operator.	
After	 converting	 all	 of	 the	 aggregated	 fuzzy	 numbers	
into	 the	 probability	 distributions	 [24],	 the	Monte	Carlo	
simulation	of	the	travel	time	reliability	for	each	path	was	
performed	with	10000	trials.	The	inverse	transformation	
sampling	[25]	was	used	to	generate	random	variates	for	
each	 of	 the	 input	 variables.	 Figure	 3	 shows	 the	Monte	
Carlo	simulation	results	for	the	path	between	the	points	
16	and	3,	as	an	example.	Then,	a	simple	tabu	search	[26,	
27]	algorithm	was	implemented	to	solve	the	model	and	
the	results	were	presented	in	Table	2.		

Figure 2. Fuzzy	numbers	represent	linguistic	variables

Table 1. 	Linguistic	expressions	of	the	ambulance	drivers

Points Linguistic terms

16-33 VH,	M,	M,	VH,	H,	H,	H,	VH,	VH,	VH

16-3 H, H, M, L, H,  L, H,  L, H,  M

4-12 L, M, M, M, L, L, L, M, L, L

50-28 L,	L,	VL,	L,	L,	L,	VL,	L,	VL,	L

28-4 M,	M,	M,	VL,	VL,	M,	L,	M,	L,	L
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Figure 6. The	 simulated	 distribution	 of	 the	 STT	
between	the	points	16	and	33

Figure 7. The	 observed	 distribution	 of	 the	 STT	
between	the	points	16	and	33

Figure 5. The	 observed	 distribution	 of	 the	 STT	
between	the	points	16	and	3

RESULTS AND DISCUSSIONS

Table	 2	 shows	 the	 comparison	 of	 the	 optimum	
solutions	 in	 terms	 of	 the	 demands	 covered	 twice	 as	 a	
function	of	β1.	It	was	observed	that	the	selected	value	of	
β1 (80	%)	is	lower	to	reach	the	coverage	threshold	(75%).	
On	 the	other	hand,	when	 the	desired	 reliability	 level	 is	
higher than 83%, the coverage ratio decreases abruptly as 
shown	in	Table	2.	Comparing	the	obtained	coverages	for	
two	different	 choices	of	β1	 (83	and	85%)	 indicates	 that	
the	difference	between	their	percentages	is	86.20%.	This	
result	shows	that	there	is	a	rapid	increase	in	the	number	
of	the	unreliable	paths	between	the	demand	points	for	a	
threshold reliability value above 83%. It can be noted that 
the	most	appropriate	value	of	β1	 for	any	given	problem	
is	 not	 known	 a	 priori,	 in	 this	 case,	 β1 is determined 
parametrically	as	a	 function	of	α	and	p,	 as	 follows:	 the	
highest	one	that	maximizes	the	coverage	is	selected.

The	 examination	 of	 the	 agreement	 between	 the	
simulated	 and	 observed	 distributions	 of	 the	 STT	
between	 the	points	16	and	3,	16	and	33	shows	 that	 the	
fuzzy	 approach	under	 consideration	may	work	well	 for	
reproducing	 the	STTs	 (Figure	 4-7)	The	 statistics	 of	 the	
simulated	 and	 observed	 data	were	 given	 in	Table	 3,	 in	
which	m,	 s,	CV	and	CS	denote	 the	mean,	 the	 standard	
deviation,	the	coefficient	of	variation	and	the	skewness,	
respectively.	The	mean	difference	was	also	tested	using	
the paired t-test on H0: msimulated STT=mobserved STT 
and	H1:	msimulated	STT≠mobserved	STT.	Table	3	shows	
that there is no statistical evidence that the simulated STT 
differs	 from	 the	 observed	 STT	 at	 the	 95%	 confidence	
level.

CONCLUSIONS

In	 this	 study,	 the	RBDSM	addresses	 the	 travel	 time	
uncertainty	 in	 determining	 the	 coverage	 of	 the	 demand	
points.	 The	 results	 of	 the	 case	 study	 show	 that	 the	
RBDSM	can	be	applied	easily	and	successfully	to	a	real-
world	 problem.	 Despite	 the	 insufficient	 information,	

Figure 4.	 The	 simulated	 distribution	 of	 the	 STT	
between	the	points	16	and	3

a	 fuzzy	 approach	 (fuzzy	 shortest	 travel	 time	 and	 fuzzy	
target	travel	time)	can	be	useful	to	handle	the	travel	time	
uncertainty in the ambulance location problems. It may 
provide	a	flexible	and	efficient	alternative	to	estimate	the	
travel	times.	These	fuzzy	travel	times	may	also	serve	as	
a	 reference	 for	 future	measures	 by	 EMS	 staff	 or	 other	
health providers in an emergency.     
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Table 3. The	statistics	of	the	simulated	and	observed	STTs	and	the	t-test	results

Points Data m s CV CS t tcritical

16-3 Observed 6.137 0.963 0.156 -0.160 1.634 1.662

Simulated 5.968 0.450 0.075 0.172

16-33 Observed 8.340 1.206 0.144 -0.171 1.066 1.666

Simulated 8.492 0.592 0.069 0.409


