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Abstract
In this study, the reliability based double standard model (RBDSM) was proposed to address the travel time uncertainty associated with the 

determination of the coverage. This new covering model was applied to solve the ambulance location problem of the province of Sivas, Turkey. 
The reliability analyses were performed between all demands as a function of the fuzzy shortest travel time and the fuzzy target travel time. The 
results indicate that the fuzzy travel times may be appropriate to handle the uncertainty investigated here and have a good potential to be used for 
the ambulance location problems.
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INTRODUCTION

An emergency medical service (EMS) which aims 
to reduce mortality, disability and suffering in persons 
[1,2] requires locating a limited number of ambulances 
at appropriate points in order to provide a quick response 
to an emergency situation. Covering models are the 
most widespread location models for formulating the 
ambulance location problem in the literature [3-5]. The 
objective of the covering models is to provide adequate 
coverage to the demand points. A useful extension of 
the basic coverage models is the double standard model 
(DSM). This model seeks to maximize the double-
covered demand points within two time limits [6], one 
to cover the whole demand area and another to cover 
part of it. The concept of coverage can be explained 
that a demand point is considered covered by an 
ambulance location point if the travel time between the 
two points is less or equal to a standard arrival time. 
However, in real-life applications, the difficulty in the 
accurate estimation of expected coverage arises from the 
uncertainty surrounding the travel time [7, 8]. Hence, 
the incorporation of the quantified uncertainty of the 
travel time into a covering model is important in order 
to provide an accurate estimation of the coverage. Travel 
time reliability is a useful measure for the quantification 
of the travel time uncertainty [9, 10]. This reliability 
measure is the probability that the destination can be 
reached in a time less than some threshold value and 

it concentrates on a particular link or a set of links 
representing any path within a transportation network 
[10]. Travel time reliability can be estimated by Monte 
Carlo simulation which is a common approach to 
reproduce stochastic variables preserving the specified 
distributional properties [11]. However, it is often 
difficult to obtain adequate statistical information 
for application of this method. In such case, fuzzy set 
theory [12, 13] can provide a useful tool for directly 
working with experts’ knowledge [14, 15]. Fuzzy set 
theory has been successfully used in different areas 
for solving complex and uncertain problems [16-19]. 
Although, many covering models have been extended 
to the probabilistic models to capture the uncertainty in 
the coverage problem [20-22], the fuzzy set theory has 
received little attention in ambulance location problems. 

In this study, the DSM was extended to a reliability 
based double standard model (RBDSM). The RBDSM 
evaluated the travel time reliability of each path between 
demand points in the province of Sivas, Turkey. The 
Monte Carlo simulation method was used to estimate 
the travel time reliability indices in the model. Travel 
time information between all of the demand points were 
approximated by using fuzzy membership functions, 
since the sufficient data about the EMS’ operations were 
not available. Thus, this study also aimed to investigate 
the potential use of fuzzy set theory in the ambulance 
location studies.
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MATERIALS AND METHODS

Reliability Based Double Standard Model
The RBDSM has the same objective function and 

constraints as the DSM except for the constraints related 
to the coverage requirements, as detailed follows: The 
DSM [6] defines two coverage standards as r1 and r2 with 
r1 < r2. In the DSM, the objective function is to maximize 
the demands covered twice within r1, while all demands 
must be covered at least once within r2. The definition 
of the coverage in the DSM is that the demand point is 
covered if it is within the target time or distance, otherwise 
it will not be covered. However, this deterministic 
definition of the coverage is unrealistic because of not 
taking into account the travel time uncertainty [7]. The 
RBDSM is proposed to address this problem: A demand 
point ∈i v  is said to be covered by site ∈j w  if and 
only if the travel time reliability between i and j is equal 
to or higher than the desired reliability levels β1 and β2 
: Pij (tij – rij ≤ 0) ≥ β1 and β2 with β2 < β1. Thus, every 
demand point is covered or not by the measures of the 
reliability. Where, tij and rij are the shortest travel time 
(STT) and target travel time (TTT) between i and j, 
respectively. Pij (tij – rij ≤ 0) is the travel time reliability 
between i and j. The TTT is defined as the acceptable 
travel time for ambulance response to an emergency 
incident. Let { }1

i ij ij ij 1w = j  w : P (t - r 0)  b∈ ≤ ≥
and { }2

i ij ij ij 2w = j  w : P (t - r 0)  b∈ ≤ ≥  be the sets of 
potential location sites covering demand point i within 
β1 and β2, respectively. The binary variable xi

k is equal 
to 1 if and only if the demand at point ∈i v  is covered 
k times within β1 reliability level. The objective function 
maximizes the demand covered twice within β1:
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Where, di is the demand of point i the integer variable  
yj denotes the number of ambulances located at ∈j w
, p is the number of available ambulances, pj is the 
maximum number of ambulances at ∈j w .  Constraint 
(2) expresses that all demand is covered within β2. 
Constraint (3) represents a proportion ά of the demand is 
covered. The left hand side of constraint (4) denotes the 
number of ambulances covering point i within β1, while 
the right-hand side is equal to 1 if i is covered once within 
β1, and equal to 2 if it is covered at least twice within 
β1. Constraint (5) states that point i cannot be covered at 
least twice, if it is not covered at least once. In Constraint 
(7), pj can be set as 2 since an optimal solution using this 
upper bound always exists. 

Figure 1.  Demand points of the province of Sivas
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Table 2. The optimum solutions of the RBDSM

b1

(%)

Coverage

Optimum solutionDemand (%)

80 283233 100 36-44-45-46-58-60

81 281254 99.30 36-44-45-46-58-59

82 266723 94.17 48-50-54-58-59-60

83 219764 77.59 36-45-53-55-58-60

84 100750 35.57 35-36-44-47-59-60

85 30313 10.70 41-44-45-56-58-59

Figure 3. The results of the Monte Carlo simulation for 
the path between the points 16 and 3

Implementation of the RBDSM 
In this study, the RBDSM was applied to the province 

of Sivas, Turkey.  The province is located at the eastern 
part of the Central Anatolian region of Turkey, with a 
surface area of 35.712 km2 and a population of 283233 
inhabitants. It is distributed among 60 zones (Figure 1). It 
was assumed that each zone represents a potential demand 
point, as well as a potential ambulance location site. The 
values of ά, β1 and β2 were taken as 0.75, 0.80 and 0.70, 
respectively. The number of available ambulances in the 
province was limited to 6 and the upper bound on the 
number of ambulances per site was set to 1.

The STT and TTT were evaluated in linguistic 
variables of “very very low” (VVL), “very low” (VL), 
“low” (L), “medium” (M), “high” (H), “very high” (VH), 
“very very high” (VVH). These linguistic terms were 
expressed by triangular fuzzy numbers for each of the 
variables and fuzzy shortest travel time (FSTT) and fuzzy 
target travel time (FTTT) were identified as shown in 
Figure 2. The linguistic expressions about them between 
all demand points were obtained from the opinions of 10 
ambulance drivers. Table 1 shows the linguistic terms of 
the drivers’ opinions between some points, as an example. 
Their corresponding fuzzy numbers were then aggregated 
into one fuzzy number for each of the fuzzy variables. The 
mean operator [23] was used as the aggregation operator. 
After converting all of the aggregated fuzzy numbers 
into the probability distributions [24], the Monte Carlo 
simulation of the travel time reliability for each path was 
performed with 10000 trials. The inverse transformation 
sampling [25] was used to generate random variates for 
each of the input variables. Figure 3 shows the Monte 
Carlo simulation results for the path between the points 
16 and 3, as an example. Then, a simple tabu search [26, 
27] algorithm was implemented to solve the model and 
the results were presented in Table 2.  

Figure 2. Fuzzy numbers represent linguistic variables

Table 1.  Linguistic expressions of the ambulance drivers

Points Linguistic terms

16-33 VH, M, M, VH, H, H, H, VH, VH, VH

16-3 H, H, M, L, H,  L, H,  L, H,  M

4-12 L, M, M, M, L, L, L, M, L, L

50-28 L, L, VL, L, L, L, VL, L, VL, L

28-4 M, M, M, VL, VL, M, L, M, L, L
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Figure 6. The simulated distribution of the STT 
between the points 16 and 33

Figure 7. The observed distribution of the STT 
between the points 16 and 33

Figure 5. The observed distribution of the STT 
between the points 16 and 3

RESULTS AND DISCUSSIONS

Table 2 shows the comparison of the optimum 
solutions in terms of the demands covered twice as a 
function of β1. It was observed that the selected value of 
β1 (80 %) is lower to reach the coverage threshold (75%). 
On the other hand, when the desired reliability level is 
higher than 83%, the coverage ratio decreases abruptly as 
shown in Table 2. Comparing the obtained coverages for 
two different choices of β1 (83 and 85%) indicates that 
the difference between their percentages is 86.20%. This 
result shows that there is a rapid increase in the number 
of the unreliable paths between the demand points for a 
threshold reliability value above 83%. It can be noted that 
the most appropriate value of β1 for any given problem 
is not known a priori, in this case, β1 is determined 
parametrically as a function of α and p, as follows: the 
highest one that maximizes the coverage is selected.

The examination of the agreement between the 
simulated and observed distributions of the STT 
between the points 16 and 3, 16 and 33 shows that the 
fuzzy approach under consideration may work well for 
reproducing the STTs (Figure 4-7) The statistics of the 
simulated and observed data were given in Table 3, in 
which m, s, CV and CS denote the mean, the standard 
deviation, the coefficient of variation and the skewness, 
respectively. The mean difference was also tested using 
the paired t-test on H0: msimulated STT=mobserved STT 
and H1: msimulated STT≠mobserved STT. Table 3 shows 
that there is no statistical evidence that the simulated STT 
differs from the observed STT at the 95% confidence 
level.

CONCLUSIONS

In this study, the RBDSM addresses the travel time 
uncertainty in determining the coverage of the demand 
points. The results of the case study show that the 
RBDSM can be applied easily and successfully to a real-
world problem. Despite the insufficient information, 

Figure 4. The simulated distribution of the STT 
between the points 16 and 3

a fuzzy approach (fuzzy shortest travel time and fuzzy 
target travel time) can be useful to handle the travel time 
uncertainty in the ambulance location problems. It may 
provide a flexible and efficient alternative to estimate the 
travel times. These fuzzy travel times may also serve as 
a reference for future measures by EMS staff or other 
health providers in an emergency.     
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Table 3. The statistics of the simulated and observed STTs and the t-test results

Points Data m s CV CS t tcritical

16-3 Observed 6.137 0.963 0.156 -0.160 1.634 1.662

Simulated 5.968 0.450 0.075 0.172

16-33 Observed 8.340 1.206 0.144 -0.171 1.066 1.666

Simulated 8.492 0.592 0.069 0.409


