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INTRODUCTION
Brennan M. J. et al. [1] presented a consistent and 

concise analysis of the free and forced vibration of a mass 
supported by a parallel combination of a spring and an 
elastically supported damper. The results are presented in 
a compact form and the physical behavior of the system is 
emphasized. The usefulness of the additional spring in series 
with the damper is investigated, and optimum damping 
values for the system subject to different types of excitation 
are determined and compared.

Wang L. and Cheng S. [2] discussed relative equilibria 
(or steady motions) and their stability for the dynamics of 
the system of two spring-connected masses in a central 
gravitational field. The system can be regarded as a 
simplified model for the Tethered Satellite System (TSS), 
where the tether is modeled by a (linear or nonlinear) spring. 
Numerical computations show some interesting non great-
circle relative equilibria for the spring-connected system. 
It is shown that for practical configurations, the system at 
radial relative equilibria is stable if some conditions are 
satisfied.

Ram Y. M.  and Caldwell J. [3] considered a linear, n 
degree-of-freedom, free–free, vibratory system and supposed 
that the system under consideration is a multiply connected 
system, in the sense that each of its concentrated masses 
may be connected through a linear spring to each of its other 
masses. An algorithm, which reconstructs the mass and 
stiffness matrices of the system from the data, is presented. 
The multiplicity of the solutions and the sensitivity of the 

problem to perturbation are investigated.
Satto H. and Wada H.  [4] presented an analysis of the 

forced vibrations of a rigid mass connected to an elastic 
half-space by an elastic rod or a spring and subjected to 
a harmonic disturbing force in the direction of the rod or 
the spring axis. The response curves of a rigid mass are 
obtained, for both a uniform normal stress distribution and a 
uniform normal displacement at the interface between a rod 
and a half-space. The effect of stiffness, mass, and damping 
of an elastic half-space on the response curves of the system 
are shown.

Kaveh A. and Nikbakht M. [5] developed a methodology 
for an efficient calculation of the Eigen values for symmetric 
mass–spring systems in order to reduce the size of the Eigen 
problem involved. This is achieved using group-theoretical 
method, whereby the model of a symmetric mass–spring 
system is decomposed into appropriate sub models. The 
results are compared to those of the existing methods based 
on graph theory and linear algebra. 

Dobry R. and Gazetas G. [6] presented a method to 
compute the effective dynamic stiffness and dashpots of 
arbitrarily shaped, rigid surface machine foundations placed 
on reasonably homogeneous and deep soil deposits. The 
method is based on a comprehensive compilation of a number 
of analytical results. The proposed method is applicable to a 
variety of area foundation shapes, ranging from circular to 
strip and including rectangles of any aspect ratio as well as 
odd shapes differing substantially from rectangle or circle. 
The results confirm that both frequency and foundation 
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Nomenclature
L  The Lagrange function (N)
PSD  The power spectral density estimation 
F1,F2  External forces act on the masses (N)
m1,m2  Masses (kg)
k1,k2  Springs coefficients (N/m)
kc  Two bars coupling spring coefficient
L  Length of the beam (m)
Qnc  Non-conservative forces (N)
R  Amplitude ratio (dimensionless) 
T  Kinetic energy (N)
V  Potential energy (N)

Latin symbols
θ1(t) and θ2(t)  Independent coordinates used to specify the   

  motion of the system
α   The coupling coefficient   
.θ  The angular velocity of the coordinates
..θ  The angular acceleration
 
ω  Frequency 
 
φ  The phase angle 
 
Subscripts 
c  Coupling
nc  Non-conservative
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shape may significantly affect the stiffness and dashpot.
Shanshan Yao et al. [7] realized experimentally a 

mass–spring system with negative effective mass, and its 
transmission property is examined in the low-frequency 
range. The negative effective mass is confirmed by 
experiments through the transmission properties of a finite 
periodic system composed of such basic units. In the negative 
mass range, low transmissions of the system are observed 
and it is well predicted by the theory. In addition, zero 
effective mass is discussed and experimentally investigated, 
which gives rise to no phase shifts in the system. 

Suggs C. W. et al. [8] developed a damped spring-mass 
system closely approximating to the dynamic characteristics 
of a seated man to vertical modes of vibration as the basis 
on which a standardized vehicle seat testing procedure can 
be built. Analysis of the problem by means of mechanical 
impedance techniques indicated that a two-degree-of-
freedom system was sufficient to simulate the major dynamic 
characteristics of man in the frequencies below 10 Hz where 
seat vibration is most severe.

 Ghayesh M. et al. [9] investigated the nonlinear coupled 
longitudinal-transverse vibrations and stability of an axially 
moving beam, subjected to a distributed harmonic external 
force, which is supported by an intermediate spring. The 
resulting equations are solved via two different techniques: 
the pseudo-arc length continuation method and direct time 
integration. The frequency-response curves of the system 
and the bifurcation diagrams of Poincaré maps are analyzed.

Miranda E. and Thomsen J. [10] predicted a simple 
model for vibration induced sliding of mass, and provides 
quantitative experimental evidence for the validity of the 
model. A mathematical model is set up to describe vibration 
induced sliding for a base-excited cantilever beam with a 
spring-loaded point mass. The experiments provide evidence 
that the simplified mathematical model retains those features 
of the real system that are necessary for making useful 
predictions of transient and stationary first-mode response.

Kirk C.L. and Wiedemann S.M. [11] presented an 
analytical solution for the natural frequencies, mode shapes 
and orthogonality condition, of a free–free beam with large 
off-set masses connected to the beam by torsion springs. 
The study lays the foundation for investigations into the 
dynamics and vibration control of multi-link articulated 
systems such as the Space Shuttle Remote Manipulator.

In this paper the equations of motion of two coupled 
masses supported by two springs and coupled with another 
spring by parallel massless bars system were derived. The 
set of equations including the effect of coupling on the time 
response of the motion for the two masses is examined 
theoretically and numerically with the presence of damping 
and without damping for different cases including free and 
forced vibration. The dynamic response equations of the 
system was studied and solved using computer simulation 
program by considering two independent coordinates to 
describe the motion as shown in Figure (1) assuming that the 
system vibrates in a vertical  plane. 

MODEL ANALYSIS
Introduction
By referring to figure 1, the system consist of two 

masses; m1 and m2, two springs with coefficients k1 and 
k2 and two bars coupled with a spring of coefficient kc, and 
required two independent coordinates to describe its motion 
by assuming that it vibrates in a vertical  plane. 

Assume that  θ1 (t) and θ2 (t)  are independent coordinates 
used to specify the motion of the system, thus, the system 
has two degrees of  freedom . The motion of the system 
is completely described by the coordinates  θ1 (t) and θ2 
(t) which define the position of the masses m1 and m2 at 
any time from the respective equilibrium positions . The 
external forces F1(t) and F2(t) act on the masses m1 and m2 
respectively.

There are two equations of motion for the two degree of 
freedom system, one for each mass. If a harmonic solution is 
assumed for each coordinate, the equations of motion lead to 
a frequency equation that gives two natural frequencies for 
the system. If a suitable initial excitation given, the system 
vibrates at one of  these natural frequencies. 

The system has two normal modes of vibration 
corresponding to the two natural frequencies. If an arbitrary 
initial excitation given to the system, the resulting free 
vibration will be a superposition of the two normal modes 
of vibration.

However, if the system vibrates under the action of 
an external harmonic force, the resulting forced harmonic 
vibration takes place at the frequency of the applied force.

The coupling coefficient   is introduced to relate the 
coupling spring kc with the other springs k1 and k2.

System descriptions and Assumptions
Two masses (m1,m2) are supported by two springs 

(k1,k2) and connected through a mechanical coupling by 
two parallel bars connected by a spring as shown in Figure 
(1). For simplification purpose it is assumed that the bars are 
massless. 

Figure 1. Schematic diagram of two coupled masses
                     
The system equations of motion    
The kinetic energy equation (T) of the system can be 

described as follows:

 (1)
Where  θ is the angular velocity of the coordinates.
The potential energy equation (V) of the system is:

The Lagrange function is introduced as follows, (Burton 
1994, [12]:

L = T- V
By substitution instead of the two types of energy:

                                                                      (3)
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The Lagrange principle stated that:

                   
Where non-conservative forces ( Qnc ) equal zero. 
The resulting equations are :
 

So equations (4) & (5) are the coupled differential 
equations of the system and can be arranged as follows:

                (6)

The system free vibration analysis 
By referring to Figure (1), the assumptions considered to 

solve the system equations are:
1- F1 (t) = F2 (t) =  0 
2- Massless bars
3- The two masses m1 and m2 can oscillate  

harmonically with the same frequency ( ) and phase angle (  
) but with different amplitudes, so that it is possible to have 
harmonic motion as follows:

θ1(t)  =θ1 cos( ω t + φ ) and  θ2(t) = θ2cos (ω t + φ )                     
(7)

Where θ1 , θ2 are constants that denote the maximum 
amplitudes of θ1 (t) and θ2 (t) , and φ  is the phase  angle.

By differentiating and substituting in equations (4) and 
(5 ), the obtained equations are :

  cos ( t + ) = 0

                         
       Since equation (8) must be satisfied for all values of 

time t , the terms between brackets must be zero .This yields:

 
                                                                            (9)  
  
Which represent two simultaneous homogeneous 

algebraic equations in the unknowns   and  .
 It can be seen that equation (9) is satisfied by the trivial 

solution = = 0, which implies that there is no vibration . For a 
nontrivial solution of  and  the determinant of the coefficients 
of   and   must be zero :

Equation (10) called the frequency or characteristic 
equation because solution of this equation yields the 
frequencies or the characteristic values of the system. The 
roots of equation (10) are given by:

This shows that it is possible for the system to have a 
nontrivial harmonic solution of the form of equation (7) 
when   is equal to   and  given by equation (11), where   and   
the natural frequencies of the system .

Denote the values of   and  , corresponding to   as   and  , 

and those corresponding to   as   and  . Further, since equation 
(9) is homogenous, only the ratios    can be found .

Where ,   and  are the modal vectors of the system, and 
the constants can be determined by the following initial 
conditions:

Time response and power spectral density estimation 
To find the time response of the system, two cases were 

considered :
Case .1  Free vibration response 

Equation (16) represent a two coupled second order 
differential equations , which can be expressed as a system 
of coupled first order differential equations and solved by 
using the MATLAB program after substituting the values of 
masses and stiff nesses which assumed for the system. 

 Then the power spectral density estimation can be found 
using the Matlab program using what designated as (PSD 
function).

 Case 2:  Forced vibration response

equation (17) represents a two coupled second order 
differential equations , which can be expressed as a system 
of coupled first order differential equations and solved by 
using the MATLAB program after substituting the values of 
masses, stiff nesses, ( ), and   which assumed for the system. 

The power spectral density estimation can be found 
using the Matlab program using what designated as (PSD 
function). 

Coupling coefficient
Assuming the equations of motion to be as follows:
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For Kc = 0 ( weak coupling ) then  = 0 and   = 1 for  K = 
0 (the middle connector is a rigid rod).

In order to solve and simplify the solution of equations, 
assume m1 = m2 = 1, K =1, Fo = 1, and b (The damping 
constant) = 1, then:

 2 =                                                  (21)
 2 =                                                  (22)
So, we can draw the amplitudes of the motion of the two 

masses as a function of frequency for different values of   for 
two cases :

The amplitudes of motion of the two masses as a function 
of frequency for different values of α can be drawn.

Steady state response of the system
The steady state response of   the system is studied when 

the mass m1 is excited by the force F1 (t)=Fo exp(iωt) and 
assuming that m1= m2 ,k1 =k2 =kc =k and no damping. 
Substitute the above values in equation (17) results in:

The variation of the quantities (Ө1*k/F01)and (Ө2*k/
F01) with the frequency ratio (ω/ ω1) is plotted in figure(20).

RESULTS and DISCUSSIONS
1. Case study: To find the natural frequencies and mode 

shapes for any system, a case study can be assumed for the  
masses and stiffness matrices values, then using the Matlab 
program to find the Eigen values ( natural frequencies) and 
Eigen vectors ( modal vectors).

The case study assuming that m1 = m2 = 50 kg, K1 = K2 
= 500 N/m and Kc = 1000  N/m.

So that that mass matrix and stiffness matrix will be 
appeared as: 

    
Based on the above results, the modal vectors and mode 

shapes can be easily obtained and presented graphically for 
different cases of masses and stiffness.  

2. It can be seen from figure 2 where (m1=m2=constant, 
k1=k2=constant, kc=varies) and figure 3 (m1=m2=constant, 
k1=k2=varies, kc=constant) that when the system vibrates in 
its first mode, the displacement of the two masses have the 
same magnitudes with opposite signs. Thus the motion of 
m1 and m2 are 180o out of phase. In this case the midpoint 
of the middle spring remains stationary for all time, such 
point is called a node. 

Also it can be seen that when the system vibrates in 

its second mode, the amplitudes of the two masses remain 
the same. This implies that the length of the middle spring 
remains constant. Thus the motions of m1 and m2 are in 
phase.

Figure 2. Modal vectors and mode shapes when (m1=m2=constant, 
k1=k2 =constant, kc = varies).  

Figure 3. Modal vectors and mode shapes when (m1=m2=constant, 
k1=k2=varies, kc = constant). 

3. Figures (4 and 5) for the case (m1 = m2 = constant, 
k1 = varies, k2 = varies, kc = constant) show that when the 
system vibrates in its first mode, the displacement of the two 
masses have different magnitudes and same signs and move 
in phase with each other, but when it vibrates in its second 
mode, the displacement of the two masses have different 
magnitudes and opposite signs. Thus the motions of m1 
and m2 are out of phase. In this mode the midpoint of the 
middle spring remains stationary for all time. It can be noted 
that when k1 and k2 are replaced also the mode shapes are 
replaced according to k1 and k2.

Figure 4. Modal vectors and mode shapes when (m1=m2=constant, 
k1 less than k2,              kc = constant). 

Figure 5. Modal vectors and mode shapes when (m1=m2=constant, 
k1 greater than k2,         kc = constant).
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4. In figure (6) for the case (m1=varies, m2 =varies, 
k1 = varies, k2 = varies, kc = varies). It can be seen from 
this figure that the two masses vibrate in the first mode with 
different amplitudes and opposite signs and vibrate in the 
second mode with different amplitudes and same signs.

Figure 6. Modal vectors and mode shapes when (m1=varies, 
m2=varies, k1 =varies, k2=varies, kc=varies).

5. Figures(7,8) represent the free vibration time response 
of the system for the case when (m1=m2, kc= constant and 
different values for k1=k2) in each case. From these figures 
it can be noticed that   differs from  because of applying the 
initial conditions. The magnitudes of    and   decrease as the 
stiffness of the two springs increase which can be noticed in 
the PSD figures.

Figure 7. The free vibration time response and Power Spectral 
Density estimation for   and   when (m1=m2=constant, k1=k2=500 
N/m, kc = constant). 

 
Figure 8. The free vibration time response and Power spectral 
density estimation for   and   when (m1=m2=constant, k1=k2=1000 
N/m, kc = constant). 

6. The amplitude of m2 decreases because of the increase 
of k2. this result is shown clearly in figure(9) for the case 
when (m1=m2=constant, k1 less than k2, kc = constant).

Figure 9. The free vibration time response and Power spectral 
density estimation for   and   when (m1=m2=constant, k1 less than 
k2, kc = constant).

7. Figure (10) shows the free vibration time response and 
PSD for different masses and different spring’s stiffness. The 
figure shows different responses depending on the values of 
the masses and spring’s stiffness.

Figure 10. The free vibration time response and Power spectral 
density estimation for   and   when (m1=varies, m2=varies, k1 
=varies, k2=varies, kc=varies).

8. When the system is subjected to forced harmonic 
excitation, its vibration response takes place at the same 
frequency of that of the excitation. This result can be 
identified in figures (11 and 12). When the masses m1 and 
m2 are subjected to harmonic excitation separately many 
amplitudes arise which are differ from that of free vibration. 
This result is for the case when (m1=m2= 50 kg, k1=k2= 
500 N/m, kc = 2000 N/m, F1 and F2 varies).

Figure 11. The forced vibration time response and Power 
Spectral Density estimation for   and   when (m1=m2=constant, 
k1=k2=constant, kc = constant, F1 = 100 sin 10t, F2= 0). 

Figure 12. The forced vibration time response and Power 
Spectral Density estimation for   and   when (m1=m2=constant, 
k1=k2=constant, kc = constant, F1 = 0, F2 = 100 sin 10t ). 
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9. In figures (13, 14) the values of k1 and k2 are changed 
and increased from that of the previous case for m1=m2 
and same value of kc = constant. These figures show that 
when k1 and k2 increase the amplitudes that arise in the time 
response decrease in comparison with that of the previous 
case and the case of free vibration.

Figure 13. The forced vibration time response and Power Spectral 
Density estimation for   and   when (m1=m2=constant, k1 less than 
k2, kc = constant, F1 = 100 sin 10t, F2= 0). 
 

Figure 14. The forced vibration time response and Power Spectral 
Density estimation for   and   when (m1=m2=constant, k1 less than 
k2, kc = constant, F1 =0, F2= 100 sin 10t ). 

10. When the mass m2 is increased from that of m1 and 
at the same time is subjected to harmonic excitation , new 
time response results differs from that for free vibration 
depending on the value of the subjected force and its location 
whether on m1 or m2. This result are shown in figure (15).

 

Figure 15. The forced vibration time response and Power Spectral 
Density estimation for   and   when (m1=60 kg, m2=80 kg, k1 = 
1500 N/m, k2, kc =1000 N/m, F1 = 100 sin 10t, F2= 0). 

11. For the case where the two masses are subjected to 
the same harmonic excitation;  figure (16) shows that the 
response of the system seems to be looks like that of free 
vibration for the case when (m1=m2, k1=k2, kc = constant, 
F1=F2= 100 sin 10t). And figure (17) shows that the 
response of the system is identical to free vibration response 
when m1 differs from m2 and k1 also differs from k2 and kc 
= constant.

Figure 16. The forced vibration time response and Power 
Spectral Density estimation for   and   when (m1=m2=constant, 
k1=k2=constant, kc = constant, F1 = F2=100 sin 10t). 

Figure 17. The forced vibration time response and Power Spectral 
Density estimation for   and when (m1=varies,m2=varies,k1 
=varies,k2=varies, kc=constant,F1=F2=100 sin 10t). 

12. Figure (18) shows the variation of the amplitudes 
of   and   with frequency for different coupling coefficient ( 
) with the presence of damping. This figure reveals that the 
amplitudes decrease as   increase. Also it can be noticed that  
is greater than   for the same values of  .

Figure 18. The variation of Theta1( ) and Theta2( ) amplitudes 
versus Omega for different coupling coefficient ( ). 

13. The amplitude of the motion with the frequency for 
different coupling coefficients(0,0.2,0.4,0.6,1) are plotted 
in figure (19), for the case of no damping and assumption 
of simple case where (k1=k2=kc=1 and m1=m2=1, F0=1). 
This figure shows that   = 0 when ( = 0 and 1). Also  and   
become infinite when   =   or  =  . 

                                                                                                                                                      
                                                                                                                                                                        

Figure 19. The amplitude of the motion versus Omega for different 
coupling coefficient.

In figure (20), the response of Ө1 and Ө2 are shown in 
terms of the dimensionless parameter ω / ω1 , where ω1  was 
selected arbitrarily.

It can be seen that Ө1  and Ө2 become infinite when ω2 
= ω12 or ω2= ω22 , Thus there are two resonance conditions 
for the system, one at ω1  and other one at ω2 . At all other 
values of ω the amplitude of vibration are finite. 

It can be noticed from this figure that there is a particular 
value of the frequency ω at which the vibration of the first 
mass m1 ( where the force F1(t) is applied ) is reduced to 
zero. This characteristic forms the basis of the dynamic 
vibration of the absorbers.   
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Figure 20. The variation of amplitudes with frequency ratio 
(Undamped amplitude ratio versus frequency ratio).  

CONCLUSIONS
1) For free vibration of the system, the displacement 

(magnitude and direction of motion) of the two masses 
depends on the values of the springs stiffnesses. 

2) For free vibration the magnitudes of   and   decrease 
as the stiffness of the two springs increase.

3) For forced vibration (harmonic excitation), the system 
vibrates at the same frequency of the excitation force.

4) The amplitudes of vibration of masses in forced 
vibration decrease with the spring stiffness ( k1 and k2 ) 
increase in comparison with that of the free vibration.

5) There are two resonance conditions for the system, 
one at ω1  and the other one at ω2. 

6) The basis of the dynamic vibration of the absorber 
systems implies that there is a particular value of the 
frequency ω at which the vibration of the mass is reduced 
to zero. 
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