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Abstract
Users of commercial CBIR systems prefer to pose their queries in terms of key words. To help automate the indexing process, we represent 

images as sets of feature vectors of multiple types of abstract regions, which come from various segmentation processes. With this representation, 
we have developed an algorithm to recognize classes of objects and concepts in outdoor scenes. We have developed a new method for object 
recognition that uses whole images of abstract regions, rather than single regions for classification. A key part of our approach is that we do not 
need to know where in each image the objects lie. We only utilize the fact that objects exist in an image, not where they are located. We have 
designed an EM-like procedure that learns multivariate Gaussian models for object classes based on the attributes of abstract regions from multiple 
segmentations of color images. The objective of this algorithm is to produce a distribution for each of the object classes being learned. It uses the 
label information from training images to supervise EM-like iterations. 
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INTRODUCTION

In recent years, the computer vision community has 
started to tackle more general, more difficult recognition 
algorithms using a number of techniques that have 
been developed over the years. Techniques that use the 
appearance of an object in its images, instead of its 3D 
structure, are called appearance-based object recognition 
techniques [1]. The current limitations of these techniques 
are that they expect the image to consist of, or be limited 
to, the object in question and that this object must be 
presented from the same viewpoint as the images used 
to train the system. Appearance-based techniques have 
been able to yield high recognition accuracy in limited 
domains. Appearance-based techniques do not attempt to 
segment the image; this is both strength and a weakness 
of the approach. Region-based techniques [2] require pre 
segmentation of the image into regions of interest. In 
most applications, the reliability of image segmentation 
techniques has been a problem for object recognition, but 
image segmentation algorithms [3] that use both color 
and texture can now partition an image into regions that, 
in many cases, can be identified as having the right colors 
and textural pattern to be a tiger or a zebra or some other 
object with a well-known color-texture signature. Related 
to this approach are algorithms that look for regions in 
color-texture space that correspond to particular materials, 
such as human flesh [4]. A different set of color criteria 
and spatial region relationships can be used to find horses 
[5]. People’s faces have also been successfully detected 
using only gray-tone features and relying on heavily-

trained neural net classifiers [6]. In fact, neural nets and 
support-vector machines have become an important 
tool in recognizing several different specific classes 
of imagery. CBIR has become increasingly popular in 
the past 10 years. In a publication [7] by Smeulders et 
al. more than 200 references are reviewed. In the web 
page of the Viper project, a framework to evaluate the 
performance of CBIR systems, about 70 academic 
systems and 11 commercial systems are listed. Prominent 
systems include VISUALSEEK [8], WebSEEK, [9], 
BLOBWORLD [2], and SIMPLIcity [10]. In the CBIR, 
only a small number of researchers have worked on 
retrieval via object recognition and many of these efforts 
have been limited to a single class of object, such as 
people or horses. The SIMPLIcity system extracts 
features by a wavelet-based approach and compares 
images using a region-matching scheme. It classifies 
images into categories, such as textured or nontextured, 
graphic or non-graphic. Barnard and Forsyth [11] utilize 
a generative hierarchical model to automatically annotate 
images. Duygulu et al. [12] classifies image regions 
as blobs and finds the relationship between blobs and 
annotations as a machine translation problem. Jeon et 
al. [13] from University of Massachusetts uses cross-
media relevance models to learn the translation between 
blobs and words. In ALIP [14] concepts are modeled 
by a two-dimensional multi-resolution hidden Markov 
model. Color features and texture features based on small 
rigid blocks are extracted. A new and very promising 
approach to object classes [15] models objects classes 
as flexible configurations of parts, where the parts are 
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merely square regions selected by entropy- based feature 
detector [16]; a Bayesian classifier is used for the final 
recognition task. Image annotation has received a lot of 
recent attention. Maron and Ratan [17] formalized the 
image annotation problem as a multiple-instance learning 
model [18]. Duygulu et al. [12] described their model 
as machine translation. One problem with both of these 
approaches is the assumption of a one-to-one mapping 
between image regions and objects, which is not always 
true. Instead, some objects span multiple regions, and 
some regions contain multiple objects. For the same 
reason, these approaches cannot use context information 
to assist in recognition. Yet context is an important cue 
that is often very helpful. The fundamental difference 
between these approaches and ours is that they map 
a point in feature space to the target object, while we 
map a set of points in feature space to the target. In the 
SIMPLIcity system, the authors recognized the problem 
with one-to-one mappings and solved it with an approach 
called “integrated region matching,” which measures the 
similarity between two images by integrating properties 
of all regions in the images. This approach takes all the 
regions within an image into account, which can bring 
in regions that are not related to the target object. Our 
approach first discovers which regions are related to 
the target object and makes its decision based on those 
regions. Clearly there is no single feature suitable for 
all object recognition tasks. A robust system should be 
able to combine the power of many different features to 
recognize many different objects. Carson et al. [19] and 
Berman and Shapiro [20] provide sets of different features 
and allow users to adjust their weights, which passes the 
burden of feature selection to the user. In Wang et al. [10], 
the feature set is determined empirically by the developer. 
Our system learns the best weights for combining different 
features to recognize different objects. For the most part, 
generic object recognition efforts have been standalone. 
There is not yet a unified methodology for generic object 
class recognition or for concept class recognition [21]. 
The development of such a methodology is the subject 
of our research. In Section II we formalize this approach, 
in Section III we describe our experiments and results, 
and an extension of this approach aiming at recognizing 
object classes with different appearances.

FORMALIZING THE APPROACH

Initialization phase of the EM-variant approach, 
each object is modeled as a Gaussian component, and 
the weight of each component is set to the frequency of 
the corresponding object class in the training set. Each 
object model is initialized using the feature vectors of 
all the regions in all the training images that contain 
the particular object, even though there may be regions 
in those images that do not contribute to that object. 
From these initial estimates, which are full of errors, the 
procedure iteratively re estimates the parameters to be 

learned. The iteration procedure is also supervised by the 
label information, so that a feature vector only contributes 
to those Gaussian components representing objects 
present in its training image. The resultant components 
represent the learned object classes and one background 
class that accumulate the information from feature 
vectors of other objects or noise. With the Gaussian 
components, the probability that an object class appears 
in a test image can be computed. This part describes the 
EM-variant approach and illustrates its use with color and 
texture regions. We are given a set of training images, 
each containing one or more object classes, such as grass, 
trees, sky, houses, zebras, and so on. Each training image 
comes with a list of the object classes that can be seen in 
that image. There is no indication of where the objects 
appear in the images. We would like to develop classifiers 
that can train on the features of the abstract regions 
extracted from these images and learn to determine if a 
given class of object is present in an image. 

Single-Feature Case 
Let T be the set of training images and O be a set 

of m object classes. Suppose that we have a particular 
type a of abstract region and that this type of region has 
a set of na attributes which have numeric values. Then 
any instance of region type a can be represented by a 

feature vector of values ),...,,( 21 an
a vvvr = . Each image 

I is represented by a set F1
a
 of type a region feature 

vectors. Furthermore, associated with each training 
image I ∈T is a set of object labels OI, which gives 
the name of each object present in I. Finally, associated 

with eachobject o is the set  U
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, I, the set of 
all type a regions in training images that contain object 
class o. Our approach assumes that each image is a set 
of regions, each of which can be modeled as a mixture 
of multi-variate Gaussian distributions. We assume that 
the feature distribution of each object o within a region 

is a Gaussian ),( ∑ oooN µ , o O∈ and that the region 
feature distribution is a mixture of these Gaussians. We 
have developed a variant of the EM algorithm to estimate 
the parameters of the Gaussians. Our variant is interesting 
for several reasons. First, we keep fixed the component 
responsibilities to the object priors computed over all 
images. Secondly, when estimating the parameters of 
the Gaussian mixture for a region, we utilize only the 
list of objects that are present in an image. We have 
no information on the correspondence between image 
regions and object classes. The vector of parameters to 
be learned is:
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where are the parameters of the Gaussian for 

the ith object class and are the parameters 
of an additional Gaussian for the background. The 
purpose of the extra model is to absorb the features of 
regions that do not fit well into any of the object models, 
instead of allowing them to contribute to, and thus bias, 
the true object models. The label bg is added to the set 
OI of object labels of each training image I and is thus 
treated just like the other labels. The initialization step, 
rather than assigning random values to the parameters, 
uses the label sets of the training images. For object class 
o∈O and feature type a, the initial values are:
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Note that the initial means and covariance matrices 
most certainly have errors. For example, the Gaussian 
mean for an object in a region is composed of the average 
feature vector over all regions in all images that contain 
that object. This property will allow subsequent iterations 
by EM to move the parameters closer to where they 
should be. Moreover, by having each mean close to its 
true object, each such subsequent iteration should reduce 
the strength of the errors assigned to each parameter.  In 
the E-step of the EM algorithm, we calculate:
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(4) for region vector ra of image I and object class o and 
when normalizing in (5), we use only the set of object 
classes of OI , which are known to be present in I. The 
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After multiple iterations of the EM-like algorithm, we 

have the final values a
oµ  and ∑ a

o for each object class 
o and the final probability p(o| ra) for each object class o 
and feature vector ra. Now, given a test image I we can 
calculate the probability of object class o being in image 
I given all the region vectors ra in I:
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where f is an aggregate function that combines the 
evidence from each of the type-a regions in the image. 
We use max and mean as aggregate functions in our 
experiments.

Multiple-Feature Case
Since our abstract regions can come from several 

different processes, we must specify how the different 
attributes of the different processes will be combined. 
For the EM-variant, we have tried two different forms of 
combination:

1. Treat the different types of regions independently 
and combine only at the time of classification:
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2. Form intersections of the different types of 
regions and use them, instead of the original regions, for 
classification.

In the first case, only the specific attributes of a 
particular type of region are used for the respective 
mixture models. If a set of regions came from color 
segmentation, only their color attributes are used, whereas 
if they came from texture segmentation, only their texture 
coefficients are used. In the second case, the intersections 
are smaller regions with properties from all the different 
processes. Thus an intersection region would have both 
color attributes and texture attributes.
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RESULTS

We tested the EM-variant approach on color 
segmentations and texture segmentations. The test 
database of 860 images was obtained from two image 
databases: creatas.com and our groundtruth database. The 
images are described by 18 keywords. The keywords and 
their appearance counts are listed in Table1. We ran a set 
of cross-validation experiments in each of which 80% of 
the images were used as the training set and the other 
20% as the test set. In the experiments, the recognition 
threshold was varied to obtain a set of ROC curves to 
display the percentage of true positives vs. false positives 
for each object class. The measure of performance for 
each class was the area under its ROC curve, which we 
will henceforth call a ROC score. Figure 1 illustrates the 
ROC curves for each object, treating color and texture 
independently. Figure 2 illustrates the results for the 
same objects, using intersections of color and texture 
regions. Table 2 lists the ROC scores for the 18 object 
classes for these two different feature combination 
methods. In general, the intersection method achieves 
better results than the independent treatment method, 

Key word count

Mountains
Orangutan

Track
Tree trunk

Football field
Beach

Prairie grass
Cherry tree

Snow
Zebra

Polar bear
Lion
Water

Chimpanzee
Cheetah

Sky
Grass
tree

30
37
40
43
43
45
53
53
54
56
56
71
76
79
112
259
275
361

Table 1. EM-variant Experiment Data Set Keywords 
and Their Appearance Counts

Figure 1. ROC curves for the 18 object classes 
with independent treatment of color and texture.

Figure 2. ROC curves for the 18 object classes 
using intersections of color and texture regions.

a 6.4% performance increase in terms of ROC scores. 
This makes sense because, for example, a single region 
exhibiting grass color and grass texture is more likely 
to be grass than one region with grass color and another 
with grass texture. Using intersections, most of the curves 
show a true positive rate above 80% for false positive 
rate 30%. The poorest results are on object classes “tree,” 
“grass,” and “water,” each of which has a high variance, 
for which a single Gaussian model is not sufficient.

Our EM-variant approach, described in Section 
II, assumes that the feature distribution of each object 
within a region is a Gaussian. So it has difficulty 
modeling objects having a high variance or multiple 
appearances, for which a single Gaussian model is not 
sufficient. Therefore a justifiable extension of the EM-
variant approach is to model the feature distribution of 
each object as a mixture of Gaussian, instead of a single 
Gaussian. To compare this extension to the EM-variant 
approach described in Section II for recognizing objects 
having multiple appearances, we used the same set of 860 
images, but relabeled them with 10 general object classes 
to replace the 18 more specific classes used in that work. 
For example, the former classes “tree trunk”, “cherry 
tree”, and just plain “tree” were merged to form a single 
“tree” class. The set of 10 classes used were mountains, 
stadiums, beaches, arctic scenes, water, primates, African 
animals, sky, grass, and trees. The mapping relationships 
from the old labels to the new labels are listed in Table 
3. We applied both the EM-variant and EM-variant 
extension to this new labeled image set using color and 
texture features. The features were combined via region 
intersections. The EM-variant extension uses a Gaussian 
mixture to approximate the distribution of each object. 
While general Gaussian parameters are used for the 
original EM-variant, aligned Gaussian parameters, in 
which the covariance matrixes are diagonal matrices, 
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are adopted for the EM-variant extension. There are 
two reasons for this decision. The first one is the system 
efficiency. If there are m objects to learn, the original 
EM-variant performs the iterations for the convergence 
of a (m + 1)-component Gaussian mixture in which m 
Gaussians components are for the objects and one is for 
the “background”. For the EM-variant extension, a region 
is modeled as a mixture of object models denoted by the 
outer mixture, which in turn are modeled as Gaussian 
mixtures denoted by the inner mixtures.

Suppose that the outer mixture has (m+ 1) 
components and that the outer EM algorithm converges 
after i iterations. The inner mixtures require re-estimation 
for each of the I iterations. If the number of components 
of the inner Gaussian mixtures is m′, then there are i × 
m m′-component inner Gaussian mixtures plus one (m 
+ 1)-component complex outer mixture to calculate, 
which is much heavier work than that of the original EM-
variant. The aligned Gaussian parameters are chosen for 
the EM-variant extension to relieve the system burden. 
The other objective of using aligned Gaussian parameters 
is to reduce the number of parameters to learn. Suppose 
the feature vectors are d-dimensional. For each Gaussian 
component, there are d  parameters for the covariance 
matrix, d for the mean, and 1 for its probability. Thus with 
general Gaussian parameters, the original EM-variant has 
(m+1) × (d  +d + 1) parameters to learn. Using general 
Gaussian parameters with the EM-variant extension, 
there are (m + 1) × [m′ × (d  + d + 1) + 1] parameters 
to learn, and the number is roughly m′ times of that 
of the original EM-variant. Having more parameters 
means a higher likelihood of over fitting unless a large 
number of training samples are provided. Therefore, we 

Table 2. ROC scores for the two different feature 
combination methods: 1) independent treatment of color 
and texture and, 2) intersections of color and texture 

regions
Independent 
treatment(%)

Intersection 
Method(%)

Tree
Orangutan

Grass
Water
Zebra

Polar bear
Tree trunk

Snow
Chimpanzee

Beach
Prairie grass

Cheetah
Sky
Lion

Mountains
Cherry tree

Track
Football field

78.8
87.4
58.5
78.2
71.7
79.9
70.6
79.6
81.5
76.1
82.5
80.1
82

79.7
92.6
84.8
97.5
97

73.3
79.3
79.5
81

82.9
82.9
83.4
85.2
85.3
89

89.4
90.5
93.3
94.4
94.7
95.7
96.7
99.1

Mean 81 87.5

Table 3. Mapping of the more specific old labels to the 
more general new labels. The first column is the new 
labels and the second column lists their corresponding 
old labels. The number of images containing each object 

class is shown in parentheses.

chose aligned Gaussian parameters for the EM-variant 
extension, and the number of parameters reduces to (m 
+ 1) × [m′ × (2 × d + 1) + 1]. We performed a series of 
experiments to explore the effect of the parameter m′, the 
number of components of the inner Gaussian mixtures, 
on the performance. The ROC scores of experiments with 
different value of m′ are shown in Figure 3. In the figure, 
the ROC score of the original EM-variant is also plotted 
for comparison. It shows that when m′ is less than 4, the 
performance of the EM-variant extension is worse than 
the EM-variant and this suggests that for this particular 
task, using a mixture of a few Gaussians with the aligned 
Gaussian parameters to model a object is not as good as 
just using a single Gaussian with the general Gaussian 
parameters. When m′ increases, the performance of the 
EM-variant extension outperforms the original EM-
variant. The ROC scores settle at a level between 85% 
and 86% when m′ is greater than 10, which is about 2.4% 
higher than that of the original EM-variant. It is worth 
mentioning that having a fixed m′ is not the best solution. 
Although the major trend shows that the higher the value 
of m′, the better the performance, a bigger m′ does not 
always lead to a better performance, since the quality 
of the clustering also plays an important role here. It is 
better to have a smart clustering algorithm to adaptively 
calculate m′ for different objects and to discover the 
optimal clusters. This task is challenging and deserves 
more research by itself. The ROC scores for individual 
objects for the original EM-variant and the EM-variant 
extension with m′ set to 12 are listed in Table 4. The 
average score on the ten labels for the original EM-
variant with single Gaussian models was 82.6%; while the 
average score for the EM-variant extension was 86.0%. 
Furthermore, if only the labels of combined classes are 
considered, the EM-variant extension approach achieved 
a score of 83.1%, about 5% higher than that of the EM-
variant approach, which achieved a score of 78.2%.

New label Old label

Mountains(30) Mountains(30)

Stadium(44) Track(40, football field(43)

Beach(45) Beach(45)

Arctic(56) Snow(54), polar bear(56)

Water(76) Water(76)

Primate(116) Orangutan(37), chimpanzee(79)

African animal ebra(56),lion(71), cheetah(112)

Sky(259) Sky(259)

Grass(321) Prairie grass(53), grass(272)

Tree(378) Tree trunk (43), cherry tree(53), 
tree(361)
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