

Issues and Challenges of Automated Software Fault Tolerance Techniques

MEHREEN1* Salman QADRI2 Husnain AHMAD2 Muhammad FAHAD2
1 Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan.
2 Department of Computer Science and Information Technology, The Islamia University of Bahawalpur, Pakistan

*Corresponding author: Received: September 04, 2015

Email: ms110400100@vu.edu.pk Accepted: October 09, 2015

Abstract

In software, faults can occur and may disturb the normal behavior or working on a system. Software fault tolerance techniques must

implement to remove these faults. Fault tolerance defined as how the system fights when faults occur. A system cannot be truly fault tolerant

until software fault tolerance techniques are applied to it. In early researches it is estimated that almost 60-90% of system failures are
attributed to software failures. These failures can be controlled by applying software fault tolerance techniques. In this study, a comparative

study of different software fault tolerance techniques (like Swift, Trump, Mask and N-version programming) is carried out and current

research challenges in these techniques is also discussed.

Keywords: Design Diversity, N-Version Programming (NVP), Swift, Trump, Mask.

INTRODUCTION

Software Engineering provides the mechanism for the

development of software by applying the step by step

procedure to produce high quality product finally. It

guarantees different aspects of software to work as

designed by the engineers and allows the architects to

improve the quality of the software development efforts.

Nowadays, computer can perform human activities quickly

more than humans. But computer is a machine which can

lead to failure at any time that’s why we cannot depend on

it completely. Machine failure’s means that it gives any

kind of error or fault in the result of a program. There are

two types of fault: Software and Hardware. This research is

about software faults only, different software fault

tolerance techniques and issues of these techniques. This

research mainly focuses on identification of those issues

from different work areas and will provide the solution to

some of those identified issues.

Software faults also known as flaw, bug and failures.

Types of software faults are Arithmetic faults, Logic faults,

Syntax faults, Resource faults, Interfacing faults and Team

working faults. The system generates wrong and faulty

results due to these faults. Software containing design

faults cannot fulfil the requirement of the software and

that’s why it generate faulty results or will show wrong

behavior without any hardware failure. Human made errors

are also residing in this category because if programmer

made some mistake at the time of designing the system,

this mistake is known as a design fault. Any faults which

are intentional or unintentional and create a problem at the

designing level also resides in the category of design faults.

A program goes into error state when a fault occurs during

execution instead a program works according to its

requirements. Considering this problem, class of faults can

be modelled so that it will understand the behavior of the

system and correct it [1].

Jim Gray explains two types of faults: Bohrbug and

Heisenbug. Bohrbug are the errors occurs during the design

phase, which are stable and immovable and identified

during testing and debugging phase of the SDLC and

Heisenbug are not fixed internal faults, they belong to class

of temporary internal faults [2].

Figure 1. Comprehensive classification of Software Faults.

Fault Tolerance

Fault tolerance means that if a fault occur, but it's

bearable by the system and system do not go to system

failure [3]. The computing system should be reliable and

reliability can be attained through when system tolerate the

fault at maximum level. Two methods ensure the reliability

which is fault removal and fault avoidance and in these

cases there is no need of fault tolerance approach. These

two approaches provide reliability in both software and

hardware system [4]. In the design phase, we may use fault

avoidance, which stops the entrance of errors while

designing the system [1]. The concept of fault tolerance has

been introduced in 1950s[3]. At that time, for the hardware

reliability, manufacturer use extra hardware to remove the

fault from hardware. This technique is called hardware

redundancy. Now the concept of hardware redundancy is

used for software redundancy. Many researchers work on

the concept of redundancy [1].The result of this work is the

concurrent systems [5]. Many algorithms have been written

for this redundant structure. When a fault occurs, the error

state is recorded and some protocol is used to restore the

failure state [1].

International Journal of Natural and Engineering Sciences 9 (3): 39-44, 2015

ISSN: 1307-1149, E-ISSN: 2146-0086, www.nobel.gen.tr

mailto:ms110400100@vu.edu.pk

40

Mehreen et al / IJNES, 9 (3): 39-44, 2015

Software Fault Tolerance
When a software has the ability to find out and remove

the faults from the system which are already occurring and

it fulfill the requirement of the user. We can say, it tolerates

the faults [3]. Mostly hardware fault tolerance techniques

are used when a fault occurs in software. The major

problem with these techniques that how they find out the

problem at the time of execution of a software. The design

diversity is not helpful for the faults of hardware. For the

removal or tolerating the hardware fault, we have to apply

replication of the hardware. It means we have to use the

redundancy techniques.

Software Fault Tolerance Techniques

The major fault tolerance techniques are shortly

discussed below:

Fault Avoidance

At the time of designing, we use fault avoidance

techniques. By using these techniques, we can avoid fault

before its occurrence. Fault avoidance gives us different

techniques to avoid the entrance of faults while designing

and coding of the system.

Fault Removal

At the end time of the development phase, fault

removal methodology gives us opportunity to remove the

faults and try to stop the initiation of new faults.

Fault Tolerance

In this methodology, faults has not removed. Faults

exist in the system, but are bearable. The existing faults do

not harm the system and give accurate performance and

output.

Fault Prevention

This methodology stop the entrance of faults in the

system. Fault prevention takes responsibility of the quality

of the software.

Fault Forecasting

By using this technique, we can check the faults which

can occur while using the system. Fault Forecasting checks

the working of the system and it define the results of these

faults before the existence of the faults.

Traditional software fault tolerance techniques

Single version software environment

Single version software fault tolerance (SVSFT) are

techniques which checks the application software. It

provides a decision algorithm for the verification of code

and Exception handling is used for the fault tolerance from

the system [6].

Multiple version software environment

Multiple Version Software Environments (MVSE)

implement the mechanism by changing the design of

software. It provides multiple version of the software and

implement different software fault tolerance techniques on

them. N-self checking Programming, N-version

Programming and recovery blocks are example of MVSE

[6].

Multiple data representation environment

Multiple Data Representation Environment (MDRE)

implemented by using the data diverse techniques by

applying various data representation techniques. MDRE is

used to tolerate the faults of software at maximum level. N-

self checking programming. N-copy programming and

Retry Blocks are examples of MDRE [6].

Design diversity

The main purpose of design diversity is to decrease the

software faults. This technique tolerates the faults which

occur due to wrong specification and wrong piece of code

[6]. There are some design diversity algorithms listed

below:

1. Recovery Blocks (RcB)

2. N-Version Programming (NVP)

3. N Self-checking programming (NSCP)

Data diversity
Many faults can tackle through the design diversity

techniques, but some remain in the software, due to the

restrictions in the design diversity techniques. So, a new

technique is introduced by Ammann and knight [6] named

data diversity to overcome these remaining faults. Data re-

expression algorithms used to input data in data diversity

technique. Some data diversity algorithms are listed below:

1. Data Re-expression Algorithm (DRA)

2. Retry Blocks (RtB)

3. N-Copy Programming (NCP)

4. Adaptive N-version programming

5. Fuzzy Voting

6. Abstraction

Some software fault tolerance techniques have been

introduced to overcome the problem of extra hardware,

such as, design diversity techniques. The main purpose of

design diversity is to decrease the software faults. This

technique tolerates the faults which occur due to wrong

specification and wrong piece of code [6].

Consequently, many techniques have been developed to

tolerate the software design faults. The subsequent sections

demonstrates a brief introduction to numerous techniques,

issues, challenges and a modified version of NVP.

MATERIALS AND METHODS

Automation

In various ways automation has been used. Oxford

English Dictionary describes automation as:

The manufacturer has the automatic control of the

product form many succeeding stages.

The use of automatic control to each branch of the

science or industry.

Moreover, the mechanical or electronic devices are

used for replacing the human labor. The main purpose of

using automation in varying control systems, process and

technology is used to reduce the necessity of human

intervention. In controlling process, the automated devices

to implement used by the operator [7].

Automated Software Fault Tolerance Techniques
Automated Software fault tolerance are techniques that

find out the faults occurs in a program without any help of

the human user. It also provides solution of these faults and

repair it without human interaction.

Many automated fault tolerance techniques are

discussed below which protects the data at maximum

level.Different automated fault tolerance techniques are:

1. Swift

2. Trump

3. Mask

4. Hybrid techniques

5. N-version programming

41

Mehreen et al / IJNES, 9 (3): 39-44, 2015

Swift
A new transient fault detection technique presentedby

Reis known as SWIFT [8].Swift is an automated software

fault tolerance technique which duplicates whole program’s

instructions and create a scheduler which schedule the

original instruction only. It makes duplication by allocating

different register to the original and duplicate version of the

program without any interference of both these codes. A

validation code is used by the swift to verify that the data

generated by the original and duplicated are same to check

that both original and duplicated code are generated same

results.

Swift-R
Double-modular redundancy approach is used for

actual Swift-R transformation to implement in software.

Double redundancy finds out the faults, not recover the

data. But in Swift-R, it provides the consistency of data

with the recovery of data by proving triple modular

redundancy. The benefit of three copies is that if one copy

is changed or damaged, then other two are used to recover

it with correct values. A special voting system is defined in

the Swift-R to check which copy is damaged and which is

correct. This approach may correct single-bit fault.

Trump
AN-codes is the theoretical mechanism behind the

Trump methodology. Trump uses only two replicated

registers of the Swift-R for further process. Trump’s AN-

encoding is not as Swift-R’s triplication. Swift-R need

more calculation and more space for replication, but Trump

uses less space and fewer calculation of error detection.

Trump gives alternate solution for error detection to reduce

the performance drawbacks of the Swift-R which may be

beneficial for protecting the system to damage.

Mask
The mask is a very cheap method to provide reliability.

It implements fixed invariants to reduce faults which can

occur after the execution. Mask can reduce the number of

faults which can damage system, but it does not use the

replication technique to remove the faults.

N-version programming
The NVP was introduced by A. Avizienis in 1975. In

this approach, N-fold calculations are taken through using

autonomously designed software modules which known as

“version” in N-version programming and results of these

calculations are directed to the decision algorithm that

concludes a single decision result. The main different

between recovery block and n-version programming is

decision algorithm. In the recovery block approach, an

acceptance test (AT) is conducted for the selection of the

recovery block. But in the n-version programming

approach, a selection algorithm is used for the

implementation of the selection or for not selection.

“N-version programming is defined as the independent

generation of N>=2 operationally same program from the

similar initial specification.”

Independent generation means that programs generated

by different programmer which do not interact with each

other as perspective of the process of programming.

The main purpose of N-version programming is to

reduce the probability of the same kind of errors.

Figure 2. N-version programming model.

Modified N-version programming –A proposed

model

In N-version programming, two or more versions are

defined for the same functional specification of the

software which accepted by applying some validation

checks. The main objective of the N-version programming

is to cover the effects of the software faults exists in the

modules. There can be different problems occur due to

writing N-versions of the software, i.e., the cost, time,

complexity, quality and space, which will be discussed in

detail in chapter No. 4. All of the mentioned problems can

be overcome by applying N-version programming only on

the critical paths of the software. The main model remained

same for modified N-version programming as shown in

Figure 3. The DFD of modified N-version programming

shown below.

In modified N-version programming, there is no need

of writing N-versions of the complete software. The

programmers have to write versions only for the critical

path of the software, which reduce the length of the code

and will decline the complexity of the software. It also

decreases the cost of the project, which was increased due

to writing different versions of the whole software.

When a software starts its execution, it firstly go to the

critical path algorithm which find out the critical path. If it

finds the non-critical path, then simple execution started.

There is no need of writing N-versions of the non-critical

paths. If the critical path algorithm finds any critical path

after starting the software execution, then it started that

critical path execution. All the critical paths of the software

have different versions with same functional specification

and complexities. All versions executed and their results

stored for final decision. After that, all the versions results

gathered in a single place. All the N-versions results are

compared for acceptance the result that will be done by

voting mechanism. So, when all the versions generated the

results, then these results are submitted to a voting process.

If that algorithm finds the acceptance of a specific

result, then that version executed, complete its working and

end the critical path. But there are two aspects that may

cause the irregular end of a version:

For watch end: Sometimes the specified time is not

enough for a version to complete the process and generate

some result.

For error condition: Sometimes there may be an error

generated by the operating system while execution of the

version, such as, division by zero and an overflow.

42

Mehreen et al / IJNES, 9 (3): 39-44, 2015

Figure 3. Modified N-version Programming.

RESULTS AND DISCUSSIONS

A survey has been conducted to take view of the issues

and challenges face during the implementation of software

fault tolerance techniques. Some issues are identified from

the survey results which directly affecting the overall

performance of a software. They may consume extra

memory space to fulfill the requirement of techniques. The

detail description of each issue is given below:

Quality Items missing
The team has the responsibility to complete a project in

a short time with completing the requirement. Due to

applying the Software Fault Tolerance Techniques in a

project and completion of the project in time, team ignore

the quality of the project or some quality items of the

project. Due to this reason, the performance of the overall

project will be affected.

Quality of Code
In normal condition, when the Software Fault

Tolerance Techniques not applied in a project, then due to

the short time of deadlines of the projects, the developers

need to spend extra working hours to complete the project

in time. When a developer works under strict time pressure,

then obviously he/ she may not write bug free code. And

when the Software Fault Tolerance Techniques applied in a

project, then it requires extra skills and time to code a

project and if the deadline is near then it is confirmed that

the developer will miss the quality of the code. That is why

the quality of the code will be affected.

Project Duration
Project duration is the main hurdle for implementation

of Software Fault Tolerance techniques in a project. When

a project deadline is short, the project manager does not

decide to implement any Software Fault Tolerance

Techniques and normally a simple mechanism used i.e.

fault detection, fault avoidance etc.

Team Problem
In a team, the team member is both i.e. the beginners

and the senior team members. In team member, some

member has the knowledge of Software Fault Tolerance

Techniques and some have not. Which is another issue has

been observed from the survey. When whole team does not

have the knowledge of these techniques, then the

implementation of these techniques is not possible. This is

one of the reasons that many software houses don’t

implement the software fault tolerance techniques in their

projects.

Lack of SFT techniques skills and training
According to the survey, it can be noticed that 60%

team members have no skills of any of the software fault

tolerance techniques. There is no formal training is

conducted to train the team members. The team members

have only knowledge of these techniques which they learn

from their colleagues which is not enough. That is why the

adoption of these techniques is minimum in our software

houses. Figure 4 shows that the training of SFT techniques

is necessary.

Figure 4. Need Training of SFT

High Cost
When we talk about the N-version programming, we

know that in this technique many versions of a program

created instead of a single piece of code which will increase

the cost of the project because these versions may be of

different environments and also affect the development

cost.

Bharathi [9] also highlighted the issue of high cost due

to implementing n-version programming. She says that due

to generating N-versions of a program increases the cost of

the software. The cost of development and supporting

environment to complete the implementation will be

increased.

43

Mehreen et al / IJNES, 9 (3): 39-44, 2015

Duplication

Most of the software fault tolerance techniques use the

mechanism of duplication. In Swift, the whole program’s

instructions are duplicated and this is done by the

duplication. In Swift-R, the whole program’s instructions

duplicated two times. It means double modular redundancy

is used for this approach. So, while duplicating a whole

program, maybe some problem occurs and it may possibly

that some instruction will not duplicate due to this problem.

And if we say that all duplication is done perfectly, but it

increase the cost because extra registers are used for the

redundancy.

More space
Most of the software fault tolerance techniques use the

mechanism of duplication. In Swift, the whole program’s

instructions are duplicated and this is done by the

duplication. In Swift-R, the whole program’s instructions

duplicated two times. It means double modular redundancy

is used for this approach. So, while duplicating a whole

program, maybe some problem occurs and it may possibly

that some instruction will not duplicate due to this problem.

And if we say that all duplication is done perfectly, but it

increase the cost because extra registers are used for the

redundancy.

Code complexity
By implementing the SFT techniques, the complexity

of code has been increased. In Swift, the whole program’s

instructions are duplicated and this is done by the

duplication. For duplication, the line of code will increase

and the code of the whole program will become complex.

Same as, In Swift-R, the whole program’s instructions

duplicated two times. So, the double modular redundancy

approach has been used, which increase the line of code

and increase the complexity level of code. Each SFT

technique contains different voting algorithms, these

algorithms increase the code complexity.

Selection algorithm
In n-version programming, a selection algorithm is used

for the selection or not select a version. We know that,

many versions have been programmed for a single function

and all the versions have the same complexity level. The

selection algorithm is actually the voter to select the output.

The main issue is that the writing of a perfect selection

algorithm is difficult which select a perfect match version.

Difficult maintenance
Those projects are difficult to maintain in which SFT

techniques have been implemented in them. Because the

complexity of code has been increased. Each SFT

technique has a different mechanism for selection of

versions or module. Different voting algorithms have been

used to search that which module is correct.

Need of SFT
Implementation of Software Fault Tolerance

Techniques is necessary for the most critical applications,

where the loss of human life can happen or costly hardware

can be damaged. The quick and accurate decision should be

taken when a fault occurs and it should be guaranteed that

the decision will be taken without any computational delays

and recover the faults. SFT technique must be applied on

long life applications, networks and high performance

processing.

Work Load
From survey result and from figure 5, it is noticed that

most developers think that when they implement software

fault tolerance techniques in normal applications, the

workload has been increased. Because they think that there

is no need of software fault tolerance techniques in normal

applications. The time and efforts have been increased

when we implement these techniques in normal

applications as per as the time duration is short.

Figure 5. Work Load

Ambiguous specifications of requirements
This issue is not so obvious and not occur each time. N-

version programming work successfully when the

requirements have been accurate. If the specifications of

requirements have been gathered wrongly, it is confirmed

that the n-version programming will not give accurate

results. Because in n-version programming, different

version has been written for single function and these

versions written by different programmers. If a programmer

does not understand the requirements, then obviously the

version generated by him will not be perfect. It will create

problems.

Solutions for the Identifies Issues
Solutions to some of the above mentioned issues are

proposed. These issues are:

Quality items missing
Need great attention to increase the reliability of the

quality items and to attain the required goals i.e. good

performance and high maintainability. The things which

provide quality should not be disregarded at any cost

because they helps to attain the factors such as reliability,

maintainability and scalability.

Quality of code

The tasks should be divided into sub tasks to fulfill the

deadline requirement and it will also resolve the issue of

quality of code. Software fault tolerance technique should

be implemented in every complex task which will ensure

that the task will be completed without any fault. Due to

division of tasks into subtasks, the complexity of code will

also be reduced.

Project duration
The software fault tolerance techniques must be

implemented in critical applications. So, when the SFT

techniques applied in a project, the time duration should be

maximized as necessary. And it is the core duty of project

manager to divide the tasks accordingly to meet the

deadline. So that all the functions coded and tested

completely and project delivered on time.

Team problem

The selection of project team plays a very important

role to reduce the team problem. When the project manager

44

Mehreen et al / IJNES, 9 (3): 39-44, 2015

assigns a project to a specific team, he must choose the

team having the skills of all the techniques which applied in

the assigned project. Through this check team problem can

be resolved.

Lack of SFT techniques skills and training

To minimize this issue, it is very necessary that the

team which develops a project should have the complete

skills of these tools and techniques which they implement

in this project. In our country, no proper training given to

the team members. Software houses should be encourages

new developers and trained them accordingly so that, they

can do better work individually and with the team.

High cost
In n-version programming, one of the issues is the

increase in development cost due to multiple versions have

to be written for a single function. It can reduce by

applying design diversity to the critical paths only. Due to

applying this only on the critical paths, the cost will be

decreased because design diversity not applied to the whole

project and also the complexity will be decreased.

Selection Algorithm

The special attention will be given to the selection

algorithms in the software fault tolerance techniques. While

writing a selection algorithm for fault tolerant software, it is

necessary to give special attention to the operating system

because the cost of the software and its complexity both

depend on the development of the software and complexity

can be reduced by taking correct system functionality into

consideration.

Difficult maintenance
When a project is too long and too complex, it is

difficult to maintain if a problem occurs or change in

requirement. So to resolve this issue, the complex tasks

should be divided into sub tasks. Software fault tolerance

technique should be implemented in every complex task

which will ensure that the task will be completed without

any fault. Due to division of tasks into subtasks, the testing

can be done properly. Properly tested system may generate

less problem and there is no need of maintenance.

Work load

The workload can be reduced as per as applying the

fault tolerance techniques in normal applications. Each

application have the critical path in it, if the software fault

tolerance technique applied only on the critical path of the

application then the benefits of fault tolerance techniques

will be gained and the work load will be reduced and

software will work without any fault.

Ambiguous specification of requirements

To overcome this issue while adopting n-version

technique for the fault tolerance, extra meetings should be

arranged with the developers and clear the specifications of

requirements deeply. This will help the developer to

understand the correct requirement and as a result, the

version coded by the developer will give correct output.

CONCLUSION

We know that faults are the part of the software, but

good software is one which tolerate these faults at

maximum level and give the accurate output. Many

software fault tolerance techniques have been proposed by

many researchers. In this research thesis, different SFT

techniques have been discussed in detail. The main purpose

of this research is to find out the issues and challenges in

software fault tolerance techniques. A survey was

conducted to find out the issues of software fault tolerance

techniques. The main issues of implementing SFT

techniques in a project are: Quality Items missing, Quality

of Code, Project Duration, Team Problem, Lack of SFT

techniques, skills and training, High Cost, Duplication,

More Space, Code Complexity, Critical Application,

Selection Algorithm, Difficult Maintenance, Need of SFT,

Work Load and Ambiguous Specification of Requirements.

A solution of some of the issues have also been suggested

in this research work, i.e., Quality Items missing, Quality of

Code, Project Duration, Team Problem, Lack of SFT

techniques, skills and training, High Cost, Selection

Algorithm, Difficult Maintenance, Work Load and

Ambiguous Specification of Requirements.

Future Work

In this paper, different issues are discussed in detail

which can be arise while implementing the software fault

tolerance techniques. A solution of some of the identified

issues has been proposed. In future, the solution of

remaining issues will be proposed and presented a new SFT

technique or combination of existing SFT techniques in

which all the identified issues will be removed.

REFERENCES

[1] Liu, Z. 1991. Fault-tolerant Programming by

Transformations. Phd Thesis, Warwick Univ. (Coventry,

UK).

[2] Vaidyanathan, K., and K. S. Trivedi. 2001.

Extended Classification of Software Faults Based on

Aging. In Proc. of 12th IEEE Int. Symposium on Software

Reliability Engineering. (Hong Kong, China).

[3] Inacio, C. 1998. Software Fault Tolerance.

Dependable Embedded Systems, Carnegie Mellon Univ.

(Pennsylvania, US).

[4] Avizienis, A. 1976. Fault Tolerant Systems. IEEE

Transactions on Software Engineering. C-25(12):1304-

1312.

[5] Randell, B. 1975. System Structure for software

fault tolerance. IEEE transactions on Software Eng. 1:220-

232.

[6] Xie, Z., H. Sun and K. Saluja. 2008. A survey of

software fault tolerance techniques. Dept of Electrical and

Computer Engineering, Wisconsin Univ. (Wisconsin,

USA).

[7] Gegentana. 2011. A systematic review of automated

software engineering. M. S. Thesis, Dept. Comp. Sc.

Chalmers Univ. (Goteborg, Sweden).

[8] Reis, G. A., J. Chang, N. Vachharajani, R. Rangan

and D. I. August. 2005. SWIFT: Software Implemented

Fault Tolerance. In Proc. of the 3rd Int. Symposium on

Code Generation and Optimization. (Princeton, USA). pp.

243-254. ISBN: 0-7695-2298-X.

[9] Bharathi, V. 2003. N-Version programming method

of Software Fault Tolerance: A Critical Review. NCNSD.

(Karnataka, India).

