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Abstract 

Wind turbine aerodynamic characteristics play an important role in monitoring of condition and control of wind turbines in any wind 

power plant. Accurate estimation of these wind turbine aerodynamic characteristics is required to more realistic prediction of size of the 
storage capacity for wind energy integration. In this study, aerodynamic characteristics of horizontal axis wind turbine are modeled as a 

function of wind velocity (UD) and atmospheric air temperature (Tatm) using artificial neural networks (ANNs). Wind velocity, UD and 

atmospheric air temperature, Tatm are used as the input variables and wind power (P), power coefficient (CP), axial flow induction factor (a), 
thrust coefficient (CT) and thrust (T) are computed as the output layer. The measured values are compared versus those predicted by the ANN 

model and manufacture data. Results obtained from this study indicate that the ANN model can be a useful tool for accurate forecasting wind 

turbine aerodynamic characteristics. The most advantage of this model is that as long as having the required hub-height wind speed, UD and 
atmospheric air temperature, Tatm wind turbine aerodynamic characteristics can be predicted without detailed knowledge of turbine operations 

and its control schemes. 
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 INTRODUCTION  

 
Without decisive action, energy related greenhouse gas 

emissions may become doubled by 2050, and increased oil 

demand will heighten concerns over the security of 

supplies. For this reason, an energy revolution is needed to 

achieve a 50% reduction of global CO2 emissions relative 

to current levels by 2050. In this revolution, energy 

efficiency, sustainable and low-carbon energy technologies 

play a crucial role. In addition, renewable energy plays an 

important role in addressing global energy and 

environmental challenges [1]. Among renewable energy 

technologies, wind is the most advanced of the new 

renewable energy technologies. In a few countries, wind 

power already provides 15% to 30% of total electricity. The 

technology keeps rapidly improving, and costs of energy 

generation from the land-based wind installations have 

continued to fall. There is now 370 GW of installed wind 

power capacity in the world and a total of 128.8 GW is now 

installed in the European Union [2,3] as indicated in Figure 

1.  

As seen, wind energy has been developing towards a 

mainstream, competitive and reliable power technology. 

Globally, progress continues to be strong, with more active 

countries, ambitious manufacturers, increasing annual 

installment capacity and wide range of investments. 

According to the International Energy Agency [4] wind 

power could be generated up to 18% of the world‟s 

electricity by 2050, compared with 2.6% of today‟s 

capacity. Technology improvements have continuously 

reduced energy costs, especially on land. In this context, 

wind turbine aerodynamic characteristics estimation is an 

important tool in monitoring turbine performance, turbine 

control and power forecasting [5]. Because, effective 

integration of wind power into the power systems requires 

accurate estimation of the turbine power curve for 

operational management of wind energy as well as 

monitoring of turbine performance. Accurate estimation of 

wind turbine power characteristic curve is required to more 

realistically size the storage capacity for wind energy 

integration [5]. In this manner, an equivalent power 

characteristic curve for the entire plant can serve for the 

same purpose, for example, plant and system operators may 

use this curve to predict the plant output for a given wind 

speed [6].    
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Figure 1. Development of wind power cumulative installed 

capacity in Europe and the world 

 

The wind turbine capacity factor is an essential 

parameter in evaluating a wind turbine‟s efficiency [7]. In 

addition to this, the power characteristic curve is a wind 

turbine performance specification and an indicator of 

overall wind turbine health. Theoretical wind turbine power 

characteristic curves are obtained by manufacturers under 

assumption of ideal meteorological and topographical 

conditions. In practice, however, wind turbines are never 

used under ideal conditions, and the empirical wind turbine 
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power characteristic curves could be substantially different 

from the theoretical ones due to the location of the turbine, 

air density, wind velocity distributions, wind directions, 

mechanical and control issues, as well as uncertainties in 

measurements [5]. In this context, the use of an equation 

for determining a power curve and the obtention of its 

parameters becomes an important issue [8]. Furthermore, 

accurate estimation of power characteristic curve serves as 

an important tool in wind power forecasting and aid in 

wind farm expansion [9, 10].  

Today, the most common design of wind turbine is the 

horizontal axis wind turbine. In this study, horizontal axis 

wind turbine aerodynamic characteristics are modeled as a 

function of the hub-height wind speed. This turbine power 

curve and its aerodynamic characteristics model obtained 

for Belen Wind Farm in Turkey can be used for planning 

purposes and estimating total wind power production. The 

most advantage of this model is that as long as having the 

required hub-height wind speed, wind turbine aerodynamic 

characteristics can be predicted without detailed knowledge 

of turbine operations and its control schemes. Furthermore, 

they can also be predicted straightaway and satisfactorily 

without the use of other turbine characteristics, 

meteorological and topographical data. 

 

MATERIAL AND METHODS  
 

Study Region, Data and Turbine Technical 

Specifications  

The data used in this study were measured from Belen 

Wind Power Plant (WPP). Belen WPP is in the Hatay, 

Turkey. The location of Belen WPP in Turkey is shown in 

Figure 2. This WWP is located on the geographical 

coordinates of 36o12‟‟N 36o28‟‟E latitude and longitude, 

respectively. It is located at an altitude of 474 m above sea 

level. It was put into operation in 2009. In the first phase, 

installed capacity of the plant is 30 MW. In 2010, the 6-

MW capacity expansion provided with temporary 

admission, thus Belen WPP has reached 36 MW. Total 

installed capacity of Belen WPP has increased 48 MW with 

4 extra turbines in 2012 and annual production amounts to 

about 150 million kWh. Belen WPP includes 16 identical 

wind turbines with the rated capacity of 3 MW, the hub 

height of 80 m and the rotor diameter of 90 m. A summary 

of the technical specifications for turbine is given in Table 

1. The cut-in speed, rated speed, and cut-out speed of the 

turbines are 4 m/s, 15 m/s, and 25 m/s, respectively. 

Turbines of WPP are the VESTAS V90-3 MW wind 

turbine types. The VESTAS V90-3 MW wind turbine is a 

pitch regulated upwind turbine with active yaw and a three-

blade rotor. The turbine utilizes the OptiTip and the 

variable speed concepts. With these features rated power 

will be maintained even in high wind speeds, regardless of 

air temperature and air density, and the wind turbine is able 

to operate the rotor at variable speed (RPM). At low wind 

speeds the OptiTip system and variable speed operation 

maximize the power output by giving the optimal RPM and 

pitch angle, which also minimizes the sound emission from 

the turbine.  

Five wind turbines (T1, T2, T3, T4 and T5) were 

selected to evaluate the performance of the presented 

method. For each turbine, the collected data includes power 

output, P (kW), nacelle position (degree), wind speed, UD 

from the anemometer on top of the nacelle (m/s) and 

atmospheric air temperature, Tatm. The existing hourly data 

cover a period of 1 year (2011). From this extensive 

dataset, the distributions of UD, Tatm and P of all turbines 

are analyzed over a wide range of wind speeds.  

 

 
Figure 2. The location of Belen WPP in Turkey 

 

Table 1. Wind turbine technical properties  

Equipment Properties 

Rotor  

Diameter  90 m 

Area swept 6362 m2 

Nominal revolutions 16.1 rpm 

Operational interval 8.6-18.4 rpm 

Number of blades 3 

Power regulation Pitch/OptiSpeed 

Air brake 
Full blade pitch by three separate 

hydraulic pitch cylinders 

Tower  

Hub height 80 m 

Operational data  

Cut-in wind speed 4 m/s 

Nominal wind speed 15 m/s 

Cut-out wind speed 25 m/s 

Generator  

Type Asynchronous with OptiSpeed 

Rated output 3000 kW 

Operational data 50 Hz, 1000 V 

Gearbox  

Type Two planetary and one helical stage 

Control  

Type 

Microprocessor-based control of all the 

turbine functions with the option of 
remote monitoring. Output regulation 

and optimization via OptiSpeed and 

OptiTip pitch regulation 

 

Aerodynamics of Horizontal Axis Wind Turbines   

Figure 3 presents an energy extracting actuator disc and 

stream-tube. Practical horizontal axis wind turbine designs 

use airfoils to transform the kinetic energy of wind into 

useful energy. The analysis assumes a control volume, in 

which the control volume boundaries are the surface of a 

stream tube and two cross-sections of the stream tube. The 

turbine is represented by a uniform „actuator disc‟ which 

creates a discontinuity of pressure in the stream tube of air 

flowing through it [11]. Note that this analysis is not 

limited to any particular type of wind turbine. The 

following assumptions are made for analysis: 

 homogenous, incompressible, steady state fluid 

flow; 
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 no frictional drag; 

 an infinite number of blades; 

 uniform thrust over the disc or rotor area; 

 a non–rotating wake; 

 the static pressure far upstream and far 

downstream of the rotor is equal to the undisturbed ambient 

static pressure. 

 

 
Figure 3. An energy extracting actuator disc and stream-tube 

 

Figure 3 shows an energy extracting actuator disc and 

stream-tube. The disc upstream of the stream-tube has a 

cross-sectional area smaller than that of the disc and an area 

larger than the disc downstream. The conservation of mass 

principle for steady flow can be expressed as; 

 

in outm m                                                                    (1) 

D D W WA U A U A U                    (2) 

 

Where ρ is the air density, A is the cross-sectional area and 

U is the flow velocity. The symbol   refers to conditions 

far upstream, D refers to conditions at the disc and W refers 

to conditions in the far wake. The actuator disc induces a 

velocity variation which must be superimposed on the free 

stream velocity, and so the net stream-wise velocity is [11]: 

 

(1 )DU U a         (3) 

and  

(1 2 )WU U a         (4) 

 

Where a is called the axial flow induction factor, or 

inflow factor. The thrust force, T on the air and the power 

extraction, P from the air are calculated by; 

 

22 (1 )DT A U a a       

         (5) 

3 22 (1 )DP A U a a      

         (6) 

A power coefficient is defined as: 

31

2

p

D

P
C

U A 

       (7) 

or, 
2)1(4 aaCp      

         (8) 

The maximum value of Cp occurs when 

 

0)31)(1(4  aa
da

dC p
     (9) 

 

that gives a value of a=1/3. Hence, 

 

593.027/16
max

pC    (10) 

 

The maximum achievable value of the power 

coefficient is known as the Betz limit [11]. The force on the 

actuator disc caused by the pressure drop can also be non-

dimensionalised to provide a thrust coefficient, CT, 

21

2

T

D

T
C

U A 

       (11) 

 

)1(4 aaCT       (12) 

 

Artificial neural networks 

Artificial neural networks are computational networks 

which attempt to simulate, in a gross manner, the networks 

of nerve cell of the biological central nervous system. The 

neural network is in fact a novel computer architecture and 

a novel algorithmization architecture relative to 

conventional computers. It allows using very simple 

computational operations to solve complex, mathematically 

ill-defined problems, nonlinear problems or stochastic 

problems [12,13]. 

The main contribution of ANNs is that it allows for 

very low level programming to allow solving complex 

problems, especially those that are non-analytical and/or 

nonlinear and/or nonstationary and/or stochastic, and to do 

so in a self-organizing manner that applies to a wide range 

of problems with no re-programming or other interference 

in the program itself [14,15]. 

In the literature, there are many types of ANN such as 

Feed Forward Neural Networks (FFNN), Radial Basis 

Neural Networks (RBNN) and Generalized Regression 

Neural Networks (GRNN). The learning of ANNs is 

generally accomplished by a back-propagation algorithm. 

Back-propagation (BP) is the most commonly used 

supervised training algorithm in multilayered FFNNs. In 

back-propagation networks, information is processed in the 

forward direction from the input layer to the hidden layer 

and then to the output layer. The objective of a back-

propagation network is to find the optimal weights which 

will generate an output vector as close as possible to the 

target values of the output vector with a selected accuracy 

by minimizing a predetermined error function [12-15]. 

The fundamental processing element of a neural 

network is a neuron. The BP algorithm starts, of necessity 

with computing the output layer, which is the only one 

where desired outputs are available, but the outputs of the 

intermediate layers are unavailable (Figure 4), as follows 

[16]: 

Error-energy at the output layer is shown by ε in order 

to define, 

 

 
2 21 1

2 2
k k k

k k

d y e         (13) 
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The term “k” of the summation formula includes the 

subsequent numbers starting from 1 to N, where N is the 

number of neurons in the output layer. Consequently, the 

gradient on the ε is considered, where:   

k

kjw





 


      (14) 

Here, with the consideration of steepest gradient procedure, 

we have 

 

     1kj kj kjw m w m w m       (15) 

The jth input to the output layer of the neuron involving 

in the series with the order of kth, where, with the steepest 

descent procedure again, kjw is defined in equation 16 

below. 

kj

kj

w
w





  


                                                        (16) 

The k's perceptron's node-output zk is defined with the 

multiplication of “wkj” and “xj” terms in the sigma formula 

as presented in equation 17. 

 

k kj j

j

z w x                                                             (17) 

 

The jth input to that neuron is xj, and the perceptron‟s 

output is yk where a nonlinear function defines this output:  

 

( )k N ky F z                                                             (18) 

 

F is the nonlinear function. We can now substitute, 

 

k

kj k kj

z

w z w

   


  
                                             (19) 

 

And,  

 

( ) ( 1)k
j j

kj

z
x p y p

w


  


   (20) 

 

( ) ( 1)j j

kj k k

x p y p
w z z

    
  

  
  (21) 

 

The output layer is p. Defining: 

 

)(
)(

pz
p

k

k






                    (22) 

)1()()( 



pypxp

w
jkjk

kj


      (23) 

)1()()()(  pyppxpw jkjkkj    (24) 

 

J shows the jth input to neuron k of the output (p) layer. In 

addition, 

k

k

kk

k
z

y

yz 














    (25) 

kkkk

k

dyyd
y





)(


    (26) 

 

and, for a sigmoid nonlinearity: 

)exp(1

1
)(

k

kNk
z

zFy


     (27) 

)1( kk

k

k yy
z

y





     (28) 

Consequently, with the consideration of equations (25), 

(26) and (28), k is given with the equation 29. 

))(1( kkkkk ydyy      (29) 

 

At the output layer, following expressions are written: 

kj

k

kkj

kj
w

z

zw
w



















    (30) 

)1()()(  pyppw jkkj       (31) 

In Eq. (29), k was given in order to complete the 

derivation of the setting of output layer weights.  

If we propagate back for the hidden layer of rth order 

with the consideration of ith branch into the neuron of jth 

order, we again have the same as before, and consequently 

in parallel to Eq. (19), we can constitute equations 32 and 

33. 

ji

ji

w
w





  


     (32) 

j

ji

j ji

z
w

z w





  

 
     (33) 

When Eq. (20) is noted and the definition of  in Eq. 

(25) is defined, equation 34 can be set up as follows: 

( 1) ( ) ( 1)ji i j iw y r r y r
zj


 


      


   (34) 

When the right hand-side relation of Eq. (25) is 

considered, definition of equation (35) can be obtained:  

( 1)
( )

j

ji i

j j

y
w y r

y r z



 

    
   

  (35) 

Here, / jy   is inaccessible. Finally, ( )j r  can 

be given as: 

 

( ) ( ) 1 ( ) ( 1) ( 1)j j j k kj

k

r y r y r r w r         (36) 

The mean absolute percentage error (MAPE) and 

correlation coefficient (R) were used to see the 

convergence between the target values and the output 

values. Here, MAPE is defined as follows: 

1

1
100

n
i i

i i

p m
MAPE x

n p


      (37) 
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Figure 4. A multi-layer perceptron 

 

 

RESULTS AND DISCUSSION 

 
For the development of forecasting models, the hourly 

data records were collected in the period of 2011 for five 

turbines (T1, T2, T3, T4 and T5). Some turbine 

aerodynamic characteristic data including missing values 

were removed from the data set. From the extensive data 

set, distributions of UD, Tatm and P of all turbines were 

analyzed over a wide range of wind speeds. Other turbine 

aerodynamic characteristics such as CP, a, CT and T were 

calculated using UD and P parameters. First, the total 288 

data records were divided into two subsets such as training 

and testing data set. The training data set includes 236 data 

covered the turbines of T1, T3, T4 and T5 which are 

approximately 80% of the total data. The testing data set 

covered the turbine of T2 consists of 62 data which are 

20% of the total data. So, turbine aerodynamic 

characteristics (P, CP, a, CT and T) can be characterized as 

the function of UD and Tatm. The relationship between the 

turbine aerodynamic characteristics and independent 

variables can be expressed as: 

   , , , , ,p T D atmP a C C T f U T        

      The selected independent variables determine the 

structure of forecasting model and affect the results of the 

model and the weighted coefficient. For this reason, the 

selection of the most suitable independent variables is very 

important tool in the forming of satisfactory forecasting 

model. The ANN architecture used in this study is shown in 

Figure 5. As seen in this figure, wind velocity, UD and 

atmospheric air temperature, Tatm were used as input 

variables. Two different input combinations (Model 1 and 

Model 2) were used for estimating wind power (P), power 

coefficient (CP), axial flow induction factor (a), thrust 

coefficient (CT) and thrust (T). In Model 1, there is one 

input parameter into the network, which consisted of UD. 

On the other hand, there are two input parameters (UD and 

Tatm) for Model 2. The parameters of UD and Tatm are the 

most important climatic factors influencing performance of 

turbine aerodynamic characteristics. These parameters are 

more readily available in this region and all over the word. 

Moreover, they can be measured and obtained easily in any 

regions of the world.    

 

 
 

Figure 5. ANN architecture used in this study  

 

In order to determine the optimal network architecture, 

various structures of forecasting models were designed 

under MATLAB software. For this reason, the predictions 

were performed by taking different number of hidden layer 

neurons between 1 and 10. Models 1 and 2 were tested by 

testing data set, which was not used during the training 

process. Different training algorithms were used, and the 

best fit result was obtained. In these models, Levenberg–

Marquardt (LM) learning algorithm was used. Neurons in 

the input layer have no transfer function. Logistic sigmoid 

transfer function (logsig) and linear transfer function 

(purelin) were applied in the hidden layers and output layer 

of the network as an activation function, respectively. The 

ANN architecture consists of an input layer, an output layer 

and one hidden layer with three and two neurons for 

Models 1 and 2, respectively. In the training procedure, the 

maximum epoch‟s number was set to 300, and the mean 

square error goal was set to 5 x 10-5.  

Models 1 and 2 were trained and tested to compare and 

evaluate the performances of ANNs. The input 

combinations and obtained equations of ANN models are 

given in Table 2. These equations can be used for the 
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Table 2. The input combinations and obtained equations of ANN models 

Output  Input Model Equation 

P 

UD Model 1 
949.732 98.65 0.427 4.266 3122.747 1394.805

1511.118 3209.861 48.206
1588.875

1 1 1D D DU U U
P

e e e
    

   
  

 

UD and Tatm Model 2 
0.416 0.025 4.627 708.578 611.768 236.175

3210.86 867.528
746.762

1 1D atm D atmU T U T
P

e e
     

  
 

 

a 

UD Model 1 
0.008 20.64 0.434 6.028 1.464 0.835

0.079 0.078 24.019
23.998

1 1 1D D DU U U
a

e e e
    

   
  

 

UD and Tatm Model 2 
0.199 0.0004 2.62 0.16 0.007 2.026

17.106 8.915
8.194

1 1D atm D atmU T U T
a

e e
     

  
 

 

Cp 

UD Model 1 
0.947 11.345 0.475 7.817 2.214 3.95

0.074 0.173 11.082
10.943

1 1 1D D D
P U U U

C
e e e
    

    
  

 

UD and Tatm Model 2 
0.126 0.001 0.474 0.186 0.015 1.162

3.804 6.605
0.047

1 1D atm D atm
P U T U T

C
e e

   
  

 
 

CT 

UD Model 1 
0.477 7.771 0.963 11.441 2.187 4.276

0.19 0.088 8.677
8.421

1 1 1D D D
T U U U

C
e e e
    

    
  

 

UD and Tatm Model 2 
0.196 0.003 1.945 0.249 0.067 0.793

0.703 0.957
0.239

1 1D atm D atm
T U T U T

C
e e
     

   
 

 

T 

UD Model 1 
35.882 96.786 0.227 3.645 0.403 3.318

139.356 175.726 288.232
187.64

1 1 1D D DU U U
T

e e e
  

    
  

 

UD and Tatm Model 2 
0.355 0.022 6.443 0.339 0.054 3.692

130.309 264.079
146.342

1 1D atm D atmU T U T
T

e e
    

  
 

 

 

Table 3. The training and testing results of Models 1 and 2 

 

Characteristics 

Training procedure Testing procedure 

MAPE (%) R MAPE (%) R 

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 

P 4.88 4.63 0.9965 0.9967 3.71 3.54 0.9995 0.9991 

a 4.82 4.61 0.9787 0.9811 3.86 3.84 0.9977 0.9950 

Cp 3.73 3.67 0.9839 0.9842 2.62 2.82 0.9987 0.9959 

CT 4.13 4.07 0.9818 0.9820 2.93 3.15 0.9986 0.9950 

T 5.12 4.71 0.9896 0.9909 3.85 3.43 0.9983 0.9972 

 

 

prediction of aerodynamic characteristics of the VESTAS 

V90-3 MW wind turbines. The training and testing results 

of Models 1 and 2 are given in Table 3. Comparing the 

results of these models, it is seen that the performance 

values of Model 2 are generally better than Model 1. 

According to the derived results, based on the testing data 

set, the MAPE and R ranged from 2.62% to 3.86% and 

0.9950–0.9995, respectively. These results indicate that 

artificial intelligence models can be a useful tool for 

accurate forecasting wind turbine aerodynamic 

characteristics based on wind speed, UD and atmospheric 

air temperature Tatm. The scatter diagrams of the network 

predictions against the actual values and manufacture 

curves were drawn in order to indicate the performance of 

the ANN models. As seen in Figures 6-10, the results of 

prediction have fairly close agreement with the 

corresponding actual values.   

 

 

 

CONCLUSIONS 

 
The main objective of this study is to develop ANN 

models for estimating wind turbine aerodynamic 

characteristics, so that the wind plant performance can be 

characterized with a few measured or predicted input 

variables such as wind speeds, UD and atmospheric air 

temperatures, Tatm. Equivalent wind plant aerodynamic 

characteristic curves obtained in the present study become 

highly desirable and useful in predicting plant output for a 

given wind forecast. According to the derived results, based 

on the testing data set, the MAPE and R ranged from 

2.62% to 3.86% and 0.9950–0.9995, respectively. These 

results indicate that artificial intelligence models can be a 

useful tool for accurate forecasting wind turbine 

aerodynamic characteristics based on wind speed, UD and 

atmospheric air temperature, Tatm. The most advantage of 

this model is that as long as having the required hub-height 

wind speed, UD and atmospheric air temperature, Tatm wind 

turbine aerodynamic characteristics can be predicted 

without detailed knowledge of turbine operations and its 

control schemes. 



57 

  
A. İlhan et al / IJNES, 9 (2): 51-57, 2015                                                                                                  

 
Figure 6. Comparison between prediction and actual results for P  

 

 
Figure 7. Comparison between prediction and actual results for a  

 

 
Figure 8. Comparison between prediction and actual results for CP  

 

 
Figure 9. Comparison between prediction and actual results for CT  

 

 
Figure 10. Comparison between prediction and actual results for T  
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