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Abstract

Power System Stabilizers (PSS) are used to generate supplementary damping control signals for the excitation system in order to damp the Low 
Frequency Oscillations (LFO) of the electric power system. The PSS is usually designed based on classical control approaches but this Conventional 
PSS (CPSS) has some problems. In order to overcome the drawbacks of CPSS, numerous techniques have been proposed in literatures. In this 
paper a new Fuzzy type PSS is considered for damping electric power system oscillations. In this Fuzzy approach, the upper and lower bounds of 
the Fuzzy membership functions are obtained using Genetic Algorithms (GA) optimization method. The proposed Fuzzy-Genetics PSS (FGPSS) is 
evaluated against the Conventional Power System Stabilizer (CPSS) at a single machine infinite bus power system considering system parametric 
uncertainties. The simulation results clearly indicate the effectiveness and validity of the proposed method.
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INTRODUCTION
Large electric power systems are complex 

nonlinear systems and often exhibit low frequency 
electromechanical oscillations due to insufficient 
damping caused by adverse operating [1]. These 
oscillations with small magnitude and low frequency 
often persist for long periods of time and in some cases 
they even present limitations on power transfer capability 
[1]. In analyzing and controlling the power system’s 
stability, two distinct types of system oscillations are 
recognized. One is associated with generators at a 
generating station swinging with respect to the rest of the 
power system. Such oscillations are referred to as “intra-
area mode” oscillations. The second type is associated 
with swinging of many machines in an area of the system 
against machines in other areas. This is referred to as 
“inter-area mode” oscillations. Power System Stabilizers 
(PSS) are used to generate supplementary control signals 
for the excitation system in order to damp both types of 
oscillations [1]. The widely used Conventional Power 
System Stabilizers (CPSS) are designed using the theory 
of phase compensation in the frequency domain and are 
introduced as a lead-lag compensator. The parameters 
of CPSS are determined based on the linearized model 
of the electric power system. Providing good damping 
over a wide operating range, the CPSS parameters should 
be fine tuned in response to both types of oscillations. 
Since power systems are highly nonlinear systems, with 
configurations and parameters which alter through time, 

the CPSS design based on the linearized model of the 
power system cannot guarantee its performance in a 
practical operating environment. Therefore, an adaptive 
PSS which considers the nonlinear nature of the plant and 
adapts to the changes in the environment is required for 
the power system [1]. In order to improve the performance 
of CPSSs, numerous techniques have been proposed for 
designing them, such as intelligent optimization methods 
[2-6], Fuzzy logic [7-8] and many other techniques [9-
10]. Also the application of robust control methods for 
designing PSS has been reported in [11-14]. This paper 
deals with a design method for the stability enhancement 
of a single machine infinite bus power system using a 
new Fuzzy type PSS whose membership functions 
boundaries are tuned by genetic algorithms optimization 
method. In order to show effectiveness of the new Fuzzy-
Genetic PSS (FGPSS), this method is compared with the 
CPSS. Simulation results show that the proposed method 
guarantees robust performance under a wide range of 
operating conditions. 

Apart from this introductory section, this paper is 
structured as follows. The system under study is presented 
in section 2. Section 3 describes about the system 
modeling and system analysis is presented in section 4. 
The power system stabilizers are briefly explained in 
section 5. Section 6 is devoted to explaining the proposed 
methods. The design methodology is developed in section 
7 and eventually the simulation results are presented in 
section 8.
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 Dynamic model of the system in the state-space form 
The dynamic model of the system in the state-space 

form is obtained as (3) [15]. 

Analysis
In the nominal operating condition, the eigen values 

of the system are obtained using analysis of the state-
space model of the system presented in (3) and these 
eigen values are listed in Table 1. It is clearly seen that 
the system has two unstable poles at the right half plane 
and therefore the system is unstable and needs the Power 
System Stabilizer (PSS) for stability.

Table 1. The eigen values of the closed loop system

-4.2797

-46.366

+0.1009 + j4.758

+0.1009 - j4.758

Dynamic model of the system 
Nonlinear dynamic model
A nonlinear dynamic model of the system is derived 

by disregarding the resistances and the transients of 
generator, transformers and transmission lines [15]. The 
nonlinear dynamic model of the system is given as (1).

Linear dynamic model of the system
A linear dynamic model of the system is obtained 

by linearizing the nonlinear dynamic model around the 
nominal operating condition. The linearized model of the 
system is obtained as (2) [15]. 

Fig. 2 shows the block diagram model of the system. 
This model is known as Heffron-Phillips model [15]. The 
model has some constants denoted by Ki. These constants 
are functions of the system parameters and the nominal 
operating condition. The nominal operating condition 
parameters are given in the appendix. 

(2)

(1)

(3)
Fig. 1. A single machine infinite bus power system 

System under study
Fig. 1 shows a single machine infinite bus power 

system [15]. The static excitation system has been 
considered as model type IEEE – ST1A. 

Fig. 2.  Heffron-Phillips model of the electric power system 

Power system stabilizer
A Power System Stabilizer (PSS) is provided to 

improve the damping of power system oscillations. Power 
system stabilizer provides an electrical damping torque 
(∆Tm) in phase with the speed deviation (∆ω) in order 
to improve damping of power system oscillations [15]. 
As referred before, many different methods have been 
applied to design power system stabilizers so far. In this 
paper a new Fuzzy-Genetic PSS (FGPSS) is considered 
for damping power system oscillations [16]. In the 
next section, the proposed method is briefly introduced 
and then designing the FGPSS, based on the proposed 
method, is presented. 

Design methodology
As mentioned before, in this paper a new Fuzzy type 

PSS in considered for damping power system oscillations. 
Fuzzy method has three major sections as membership 
functions, rule bases and defuzzification. In classical 
Fuzzy methods, the boundaries of membership functions 
are adjusted based on expert person experiences that may 
be with trial and error and does not guarantee performance 
of the system. For solve this problem, in this paper the 
boundaries of the membership functions are tuned by 
an optimal search for achieving the best boundaries. 
Therefore the boundaries of input and output membership 
functions are considered as uncertain and then the optimal 
boundaries are obtained by genetic algorithms [16]. Here 
the proposed Fuzzy controller block diagram is given 
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Table 2. The linguistic variables for Δω

Big Positive 
(BP)

Medium Positive 
(MP)

Small Positive 
(SP)  

Big Negative 
(BN)   

Medium Negative 
(MN)

Small Negative 
(SN)

Zero 
(ZE)

Table 3. The linguistic variables for d(Dw)/dt

Positive (P) Negative Zero (ZE)

Table 4. The linguistic variables for output

Big Positive 
(BP)

Medium Positive 
(MP)

Small Positive 
(SP)  

Big Negative 
(BN)   

Medium Negative 
(MN)

Small Negative 
(SN)

Zero 
(ZE)

Very Big Positive 
(VBP)

Very Big 
Negative (VBN)   

Δω

         

d(Δω)
/dt

BN MN SN ZE SP MP BP

N VBN BN MN SN ZE MP BP
ZE BN MN SN ZE SP MP BP
P BN MN ZE SP MP BP VBP

in Fig. 3. In fact, it is a nonlinear PI-type Fuzzy logic 
controller with two inputs and one output. In this paper 
ΔVref is modulated in order to output of PSS and the speed 
deviation Dw and its rate d(Dw)/dt are considered as the 
inputs to the PSS. The inputs are filtered by washout 
block to eliminate the DC components. Also there are 
three parameters denoted by Kin1, Kin2 and Kout which are 
defined over an uncertain range and then obtained by 
genetic algorithms optimization method. Therefore the 
boundaries of inputs and output signals are tuned on an 
optimal value.  

Though the Fuzzy controller accepts these inputs, 
it has to convert them into fuzzified inputs before the 
rules can be evaluated. To accomplish this, one of the 
most important and critical blocks in the whole Fuzzy 
controllers should be built and it is The Knowledge Base. 
It consists of two more blocks namely the Data Base and 
the Rule Base [16].

Fig. 3. Fuzzy supplementary controller

Data base
Data base consists of the membership function for 

input variables Δω and d(Δω)/dt and output variable 
described by linguistic variables shown in Tables 2-4 
[17].

The “triangular membership functions” are used as 
membership functions for the input and output variables. 
The Figs. 4-6 illustrate these in detail indicating the range 
of all the variables. These ranges are defined as default 
and then tuned via cascade K parameters (Kin1, Kin2 and 
Kout ) and adjusted on the optimal values.  

Fig. 4. Membership function of input 1 (∆w)

Fig. 5. Membership function of input 2 (d(∆w)/dt)

Fig. 6. Membership function of output

Rule base
The other half of the knowledge base is the Rule Base 

which consists of all the rules formulated by the experts. 
It also consists of weights which indicate the relative 
importance of the rules among themselves and indicates 
the influence of a particular rule over the net fuzzified 
output. The Fuzzy rules which are used in this scheme are 
shown in Table 5. 

Table 5. Fuzzy Rule Bases
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The next section specifies the method adopted by 
the Inference Engine especially the way it uses the 
Knowledge Base consisting of the described Data Base 
and Rules Base [17]. Plotting the inputs versus output 
based rules base is shown in Fig. 7.  

used to bias the selection process. Highly fit individuals 
will have increasing opportunities to pass on genetically 
important material to successive generations. In this 
way, the genetic algorithms search from many points 
in the search space at once and yet continually narrow 
the focus of the search to the areas of the observed best 
performance. The selected individuals are then modified 
through the application of genetic operators. In order to 
obtain the next generation Genetic operators manipulate 
the characters (genes) that constitute the chromosomes 
directly, following the assumption that certain genes code, 
on average, for fitter individuals than other genes. Genetic 
operators can be divided into three main categories [18]: 
Reproduction, crossover and mutation.

Reproduction: selects the fittest individuals in the 
current population to be used in generating the next 
population.

Cross-over: causes pairs, or larger groups of 
individuals to exchange genetic information with one 
another

Mutation: causes individual genetic representations to 
be changed according to some probabilistic rule. 

Fuzzy controller tuning using Genetic Algorithms
In this section the membership functions of the 

proposed FGPSS are tuned by K parameters (Kin1, Kin2 
and Kout). These K parameters are obtained based on 
genetic algorithms optimization method. 

The parameter ΔEref is modulated to output of FGPSS 
and speed deviation Dw and its rate are considered as 
input to FGPSS. The optimum values of Kin1, Kin2 and Kout 
which minimize an array of different performance indexes 
are accurately computed using genetic algorithms. In 
this study the performance index is considered as (4). In 
fact, the performance index is the Integral of the Time 
multiplied Absolute value of the Error (ITAE).  

The parameter “t” in performance index is the 
simulation time. It is clear to understand that the controller 
with lower performance index is better than the other 
controllers. To compute the optimum parameter values, a 
0.1 step change in reference mechanical torque (DTm) is 
assumed and the performance index is minimized using 
genetic algorithms. The following genetic algorithm 
parameters have been used in present research. 

Number of Chromosomes: 3            
Population size: 48
Crossover rate: 0.5                            
Mutation rate: 0.1
The optimum values of the parameters Kin1, Kin2 

and Kout are obtained using genetic algorithms and 
summarized in the Table 6. 
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Fig. 7. The output coefficient versus two inputs

Methodologies adopted in fuzzy inference engine                      
Though many methodologies have been mentioned in 

evaluating the various expressions like Fuzzy union (OR 
operation), Fuzzy intersection (AND operation) and etc 
with varying degree of complexity. Here in Fuzzy scheme 
the most widely used methods for evaluating such 
expressions are used. The function used for evaluating OR 
is “MAX”, which is the maximum of the two operands 
and similarly the AND is evaluated using “MIN” function 
which is defined as the minimum of the two operands. 
It should be note that in the present research paper, the 
equal importance is assigned to all the rules in the Rules 
Base and all the weights are equal [17]. 

Defuzzification method
The Defuzzification method followed in this study is 

the “Center of Area Method” or “Gravity method”. This 
method is discussed in [17]. As mentioned before, in this 
paper the boundaries of the membership functions are 
adjusted by genetic algorithms. In the next section a brief 
introduction about genetic algorithms is presented.  

Genetic Algorithms 
Genetic Algorithms (GA) are global search 

techniques, based on the operations observed in natural 
selection and genetics [18]. They operate on a population 
of current approximations-the individuals-initially 
drawn at random, from which improvement is    sought.     
Individuals    are    encoded     as   strings (Chromosomes) 
constructed over some particular alphabet, e.g., the 
binary alphabet {0.1}, so that chromosomes values are 
uniquely mapped onto the decision variable domain. 
Once the decision variable domain representation of the 
current population is calculated, individual performance 
is assumed according to the objective function which 
characterizes the problem to be solved. It is also possible 
to use the variable parameters directly to represent the 
chromosomes in the GA solution. At the reproduction 
stage, a fitness value is derived from the raw individual 
performance measure given by the objective function and 

(4)

Table 6. Obtained parameters Kin1, Kin2 and Kout using 
Genetic Algorithms 

Parameters Kin1 Kin2 Kout

Obtained 
Value

72.5 30.7 0.34
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Fig. 8. Dynamic responses ∆ω following 0.1 step in 
the reference mechanical torque (∆Tm)
a: Nominal operating condition   b: Heavy operating 
condition   c: Very heavy operating condition   
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Simulation results
In this section, the proposed FGPSS is applied to 

control the under study system (single machine infinite 
bus power system). To show effectiveness of the 
proposed optimal FGPSS, A classical lead-lag PSS based 
on phase compensation technique (CPSS) is considered 
for comparing purposes.

The detailed step-by-step procedure for computing 
the parameters of the classical lead-lag PSS (CPSS) using 
phase compensation technique is presented in [15]. Here, 
the CPSS has been designed and obtained as (5).

In order to study the PSS performance under system 
uncertainties (controller robustness), three operating 
conditions are considered as follow:

i. Nominal operating condition 
ii. Heavy operating condition (20 % changing 

parameters from their typical values)
iii. Very heavy operating condition (50 % changing 

parameters from their typical values)
In order to demonstrate the robustness performance of 

the proposed method, The ITAE is calculated following 
a 10% step change in the reference mechanical torque 
(DTm) at all operating conditions (Nominal, Heavy and 
Very heavy) and results are shown at Table 7. Following 
step change at DTm, the optimal FGPSS has better 
performance than the CPSS at all operating conditions.

(5)

(6)

The control effort has been calculated following 
a 10% step change in the reference mechanical torque 
(DTm) at all operating conditions (Nominal, Heavy and 
Very heavy) and results are shown at Table 8. It is clear 
to see that following step change at DTm, the FGPSS has 
lower control effort than the other method at all operating 
conditions. This means that the optimal FGPSS damps 
power system oscillations by injecting lower control 
signal.

Table 8. The calculated control effort signal

FGPSS CPSS

Nominal operating 
condition

0.0783 0.0327

Heavy operating condition 0.0813 0.0490

Very heavy operating 
condition

0.0814 0.0721

Table 7. The calculated ITAE

FGPSS CPSS

Nominal operating 
condition

5.5259×10-4 5.5686×10-4

Heavy operating condition 5.1769×10-4 7.2451×10-4

Very heavy operating 
condition

3.9219×10-4 8.9021×10-4

Also the control effort signal is one of the most 
important factors to compare responses. The output of 
the FGPSS is considered as the control effort signal. The 
control effort signal is computed as (6).

Although the control effort and performance index 
results are enough to compare the methods, but it can be 
more useful to show responses in figures. Fig. 8 shows ∆ω 
at nominal, heavy and very heavy operating conditions 
following 10% step change in the reference mechanical 
torque (DTm). It is clear to seen that the FGPSS has 
better performance than the other method at all operating 
conditions.

(a)

(b)

(c)
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Generator

M = 10 Mj/
MVA

T´do = 7.5 s
Xd = 1.68 
p.u.

Xq = 1.6 
p.u.

X´d = 0.3 
p.u.

D = 0

Excitation system Ka = 50 Ta = 0.02 s

Transformer
Xtr = 0.1 
p.u.

Transmission 
lines

Xte1 = 0.5 
p.u.

Xte2 = 0.9 
p.u.                           

Operating 
condition

Vt =1.05 
p.u.

P=1 p.u. Q=0.2 p.u.


