

Mapping Formal Methods to Extreme Programming (XP) –A Futuristic Approach

Tasmia SAEED1* Syed Shah MUHAMMAD1 Muhammad Abuzar FAHIEM1

Sarfaraz AHMAD2 Muhammad Tariq PERVEZ1 Abdul Basit DOGAR1

1 Department of Computer Sciences, Virtual University of Pakistan, Lahore, Pakistan
2 Departement of Computer Science, Faculty of Engineering and Technology, Lahore College for Women University,

Lahore, Pakistan

*Corresponding author: Received: September 16, 2014

Email: tasmiach@live.com Accepted: October 30, 2014

Abstract
The Agile methodologies have been gaining popularity for last few years. This approach satisfies the variety of customer needs in a

better way and requirements as compared to the traditional software development methodologies. It also accepts changes in requirements

conveniently. Agile Extreme Programming (XP) is frequently used as it provides an effective project engineering ability. However, there are
some drawbacks of XP. Some projects can suffer from the lack of documentation. Sometimes it poses risks for life critical systems and a

general de-emphasis on architecture may be observed. In the practical field, there is a need to improve XP while developing safety critical

systems. For such situations, a futuristic approach is introduced in this research work by combining Formal Methods (FMs) with XP. It is a
promising contract to combine both these techniques. However if combined in a fruitful way they can give the best of both XP and FMs. By

using this approach XP can be used for the safety critical systems without any risk and at the same time cost is much reduced. In this paper a

Formal Extreme Programming (FXP) model is introduced. In this model “Software Cost Reduction” (SCR) is applied at the initial stage to
specify the requirements formally. A high level FM, Algebraic Specification will be written before coding. Algebraic specification gives

formal description of requirements in a mathematical way. The Design by Contract (DbC) is mapped conditionally at the testing phase for
complex systems. A survey through questionnaire is conducted by professionals of software industry.

Keyword: Extreme Programming (XP), Formal Methods, Formal Extreme Programming (FXP) Model, Software Cost

Reduction (SCR), Design by Contract (DbC).

INTRODUCTION

Development Models e.g. Water Fall, Fountain, and

Spiral etc., were introduced for software development.

Later on some of those traditional models were revised e.g.,

Revised Waterfall Model, primarily to improve the value &

quality of developed software. During development those

traditional models do not support the changing user

requirements. To cope with this issue Iterative and

Incremental Agile models were introduced. In 1999, Beck

introduced a light weight, flexible and predictable

methodology, Extreme Programming (XP) that reduces the

cost of change. The Agile models were popular enough

after the publication of research paper “Extreme

Programming Explained,” [1].

We find that XP gives better results as compared to

other agile models because of its four values / principles

i.e., “communication” with customer, “simplicity” of

design, getting “feedback” to solve occupational hazards

and “courage” with other three values, [2]. An ideal XP

project passes through following six phases for the

production of a successful XP product, [3].

Exploration

At this phase the customer gives his requirements in the

form of story cards, and then a priority is assigned to each

story. Later on the XP team will spend about one to two

weeks to design system architecture. If we have no idea

about how to implement a user story then architectural

experiments can be used to let it easy for us. The

programmers will estimate each task in this phase and

when they have done with a task, they will mention time

required to implement a task in the calendar.

Planning

At this phase team size (number of members required

for development), code ownership (who will be allowed to

change the code?), working hours, sitting arrangements,

schedule for development and programming pairs are

planned.

Iteration to release
In this phase the planned schedule is further broken into

iterations. Iteration is a set of functions required to be

developed. The pair of programmers takes an iteration plan

International Journal of Natural and Engineering Sciences 8 (3): 35-42, 2014

ISSN: 1307-1149, E-ISSN: 2146-0086, www.nobel.gen.tr

36

T. Saeed et al / IJNES, 8 (3): 35-42, 2014

and start the development process, by developing the

iteration with highest priority first. The functional test cases

are also produced for stories in the same iteration. The time

period of iteration should be smaller than 6 months because

the more the time you take for iteration the more risky it

will be. At the end of iteration let the customer check it and

sign the story cards of the completed stories.

Productionizing

When iteration is developed it is released for

production. At this phase it is executed to record feedback.

At this stage it is also evolved that what are the changes

required in this release, for this purpose one should have

enough knowledge about the design to justify it. If

developers are unable to justify some of the ideas then they

will make there a list about their position and decide when

the process goes in production. XP suggest daily standup

meeting for better production, in this way everybody get a

chance to know what others are doing on the iterations.

Maintenance

This phase deals with the changes in the iteration in

development, production and sometimes dead project,

either by adding new functionalities or by changing

existing functionalities. Maintenance phase also deals with

the change in the development team, like changing the

position of the programmers, managing help desk, and

adjusting new programmers in team. It is challenging to

program in this phase as compared to the development

phase, so when new members are required to program in

this phase, for first 2 to 3 iterations let them paired with an

experienced software developer.

Death

When the development and testing are completed and

the user has no new story and happy with your work, then

it’s the time to let the system “dead”. At this stage we

develop a document to describe a tour of the system.

XP gain acceptance from the software industry since

1999, for small projects and rarely for larger projects. Paulk

[4] in his study about XP doesn’t support the use of XP for

life critical project, as well as safety critical systems,

because XP can suffer from the lack of documentation,

risky for life critical systems and de-emphasis on

architecture. Considering the advantages of XP there seems

a need to improve the XP model to deal with these issues

such as how the XP model is to be improved to let it work

perfectly for life critical and safety critical systems? How

to reduce the risk of failure of Safety Critical Systems? We

know Formal Methods (FMs) can be a better solution to

these problems. The FMs are optimal to be used in the

Safety Critical System even though some software

developers consider it tough and costly [5].

The FMs are the generic methods to verify, describe

and develop a system based on mathematics. These

methods are used to describe the requirements, design and

test in a mathematical way. So there is a need to integrate

suitable FMs to the XP model. The FMs refers to pertaining

structural relationship between the elements of the system,

by using formal logic and discrete mathematics, in this way

the software development industry is provided with a more

concrete and versatile framework.

In this paper we will introduce a Formal Extreme

Programming (FXP) model. In this model we map FMs

(SCR, Algebraic Specification and Design by Contract) on

different phases of the XP model. This mapping provides

us a formal documentation in the form of Software Cost

Reduction (SCR) tables and formal specification using

algebraic specification. This reduces risk, we can say up to

99%. This FXP model can efficiently be used for Safety

Critical Systems, life critical systems and complex Object

Oriented Systems (OOS).

Software Cost Reduction

 The Software Cost Reduction (SCR), is mostly applied

to the requirement specification phase. It manages four

tables to specify the requirements. Condition table specify

post conditions and functioning of a process. It shows all

the conditions implied on a mode.

i- There should be one condition table for each mode of

the system.

ii- Event transition table will be designed as a function

of mode and event. It describes the transition between two

events.

iii- Linkage table shows the relationship between two

modes, and this table is designed in such a way that it

shows if we are at mode Mi and an event E occurs it will

lead us to mode Mj. This table shows the transition

between all modes of the system in tabular form.

iv. This table in SCR contains the record of each data

type to be used in the development.

Algebraic Specifications

 The algebraic specifications are used to specify the

subsystem interface in this way operations are specified

while specifying their relationship between operations for

an abstract data type. The algebraic specification is written

using a formal language. The basic format of algebraic

specification is shown in figure 1. This figure shows that

there are five parts of algebraic specification, i-

specification name, ii- imports, list of specification names,

iii- informal description including return type, iv- operation

signatures, describes the syntax of the interface and v-

axioms describe the semantics of operations to show the

behavior of the abstract data type.

Figure 1. Algebraic Specification

Design by Contract (DbC)

Design by Contract is a pragmatic technique introduced

by Bertrand Meyer [6]. The DbC can be called a defensive

technique for design of software. A technique named as

defensive programming was used before DbC, but that

requires the routine to be more general, it will be dangerous

otherwise. DbC is a contract between the working software

and the user. It defines the limitations on the functions, by

SPECIFICATION NAME <Generic Parameters>

Sort <name>

Imports <LIST OF SPECIFICATION NAMES>

Informal description

Operation signatures

Axioms

37

T. Saeed et al / IJNES, 8 (3): 35-42, 2014

specifying the pre-conditions and invariants; the desired

result is defined by post-conditions. Those limitations

should require to be fulfilled during execution. The DbC is

not supported in most of the previously designed languages

like C# and java etc., but latter on extensions to some

languages are introduced to support the DbC like in Java,

JML and .net etc.

The Literature study about XP, FMs and combining XP

and FMs is explained in section 2. All phases of proposed

“Formal Extreme Programming” (FXP) model, along with

the purpose of mapping FMs, are explained in section 3. To

verify our proposed model a survey through questionnaire

was conducted form different software houses. The

opinions of professionals are analyzed in section 4. Section

5 comprises the conclusions.

Related Work
The agile development gives quick response to satisfy

the customer by being iterative, incremental, adaptive, and

convergent. The traditional software development have

heavy software documents and less response to the

changing requirements, while the agile development

methods reduces the heaviness of the documentation, and

provide a quick response to the changing requirements [7].

All aspects of XP are explained and it is described that the

use of XP will render a guarantee to the programmers that

they will work for the routine problems and will not face

any disaster alone. Also for the customer and the project

managers, who will get the best and valuable response after

every programming week [3]. XP development

methodologies were characterized as iterative, incremental

and interactive with customer and developing team. It is

also termeded as “people centric approach” with adaptive

behavior [8].

Paulk [4] stated that the XP is used to provide system

perspectives for programming and that the Capability

Maturity Model (CMM) demonstrates system perspectives

for process improvement. He did not support the use of XP

for life critical projects because there are some drawbacks

of XP such as it provides poor and less documentation,

risky for life critical systems and de-emphasis on

architecture.

Using FMs

FMs can be used to overcome this problem of XP. The

FMs were studied in 1970's in Europe, and mostly applied

to the upper stage of development. These methods are used

to describe the requirements, design and test in a

mathematical way. A general framework, end of proof, data

refinement, algorithmic refinement and hiding, is described

and mapped on computation paradigm. A set theoretical

models for computation was explained, both forward and

backward approaches were described for this purpose [9].

Victor [10] adopted a Model Driven Engineering approach

to present a way to FM tools to rely on agile

methodologies. He proved that the mathematics of FMs can

be applied to modelling, examination, and inspection at

many different phases, e.g. the Z notation is used for

documentation. Wolff [11] used the formal specification

techniques as a part of the agile development process

scrum. Two teams are used which work parallel. One with

conventional development method and the second uses

FMs. He explained that combining these two

methodologies can bring the best of both the agile and

FMs. Zuo et al. [12] applied the refinement of Object and

Component System (rCOS) FM to the agile software

development. They divided the agile process in the four

stages and introduced the formal foundation of the agile

development process in rCOS framework. Larsen et al. [13]

performed a reality check that the agile methods can be

combined with the FMs. They explained the four value

statements and showed how FMs can be applied on the

agile methodologies. It is proved that the formal system

modeling can support the agile development, and provides

tools for correct transformation of complete running

systems, and suggest that some standardization are needed

to support the Object Oriented Modeling [14]. Black et al.

[15] explained that the FMs can add values to the testing,

requirements, documentation, verification and refactoring

by acting as a safety net. They explained that both the agile

and FMs are friends not foes, because both have the aim to

produce reliable software, FMs by assurance and solid

documentation, and agile methodology while satisfying

customer needs, and allow flexibility. According to them

the combination of these two will be a promising contract.

They jointly can succeed and offer useful interchange

within both. FMs can improve the quality of the system

while using Design by Contract, to measure the vigilance

and diagnosable [16]. The ten commandments of FMs

were restudied 10 years later, because some peoples did not

strongly agree with them. It was believed that FMs

facilitates passing trends and will always have their

importance in the software industry [17]. Tretmans et al.

[18] discussed seven myths of FMs (Guarantee correctness,

proving program, use for safety critical systems, require

mathematical training, increase cost of development,

unaccepted by user, and not used on real software). They

analyze and affirmed that the use of FMs can increase the

quality of software and are quite usable at industrial

context, but in addition, they require learning process. The

authors suggested a need to make the FMs applicable, and

integrate them in the software engineering practices.

Proposed Model

The relationship between two areas of software

engineering paradigm, agile methodologies and Formal

Methods were focused in this research. XP and FMs are

combined to introduce a new model of software

development, named as “Formal Extreme Programming”

(FXP) model. This model adds the spice of FMs to the

sweetness of XP. In this model SCR, algebraic

specification and DbC are mapped on the XP model. The

flow diagram of this proposed FXP model is given in figure

2. The phases of FXP model are explained in this section.

User Stories
There are many requirement gathering strategies that

can be used to gather the requirements efficiently,

depending on the design situation and nature of the project.

To collect most appropriate requirements it is better to

provide our customer the easiest and comfortable way to

describe his/her requirements. In any of the design situation

the first problem faced by a software engineer is to discover

the real problem. It is considered that the use of user

stories/story cards is best option. At this phase of the FXP

model, to get the user’s requirements, let the customer

write as many different stories as he/she can. Greater

number of different user stories means more detailed

explanation of almost all the functionalities to be

performed. This story cards help us to read the customer’s

mind easily. Once the story cards are filled by customer

these cards are passed to the development team. The team

will read and analyze the stories. If there is something

found missing in a story they do ask the customer to add

38

T. Saeed et al / IJNES, 8 (3): 35-42, 2014

User Stories

SCR

Story card

Release Plan

SCR tables

Acceptence tests

New story

Latest version

Bugs

next iteration

Small releases

release to customer

DbC

* for SCS & OOS iteration developed

SCR tables

contract

Iteration to Release

Algebraic specification

formal description

coding

Release plan

Figure 2. Formal Extreme Programming Model

more detail about that. When the customers mention

enough detail in a story card for a particular requirement,

the story card is reviewed by the development team and

then saved with the priority given by user.

Software Cost Reduction (SCR)
Once all the user stories are collected the project move

to SCR phase. The purpose of this phase is to formally

describe the user requirements. It is good practice to take a

story, analyze it and formulates it to index cards. If by

chance there are many basic requirements described in a

single story, and unfortunately the team missed any of

them, it can lead to failure and disgrace the team. It can be

more hazardous especially when we are working for a

safety critical system. For this situation, a phase is

introduced to formalize the XP model. At this phase a FM

named “Software Cost Reduction” is applied to formally

describe the requirements from the given user stories.

For SCR, four tables were constructed, as described in

introduction section, to specify the requirements,

completely by describing all required aspects, concretely

and concisely. These SCR tables must completely describe

the requirements, conditions and their linkage

unambiguously.

i. Condition Table

The condition table is designed by using task

description of the story card. In this table all the conditions

implying on a mode are described for each mode

separately. At least one condition table is required for each

controlled variable. In this way the condition tables

describe the complete functionalities of the system. This

condition table is shown in figure 3.

Figure 3. Format of Condition Table

ii. Event Transition Table

In event transition table the designer describe the output

variable as relation to mode, events and values. It describes

the transition between a mode and an event, as shown in

figure 4.

Figure 4. Event Transition Table

iii. Linkage Table

This can also be known as mode transition table. This

table is designed to show relationship between modes as

shown in figure 5.

39

T. Saeed et al / IJNES, 8 (3): 35-42, 2014

Figure 5. Limkage Table

iv. Directory

This table in SCR comprises the record of each data

type to be used in the development. There are four types of

directories maintained. Content directory is used to give

values to constants, type directory to define the user

defined types, mode class directory to store list of all class

modes and variable directory is used to store list of variable

A newer FM Graph Based Hoare Logic (GBHL) can be

mapped at this phase for complex Object Oriented System.

The same was introduced by Zhao et al. (2013). But latter

on it was realized that the mapping of GBHL at this phase

costs more than its benefits. So that is why it is decided that

the GBHL should not be mapped at this stage.

Release Plan

At this phase the development process of the project

will be planned, by using formalized requirements (SCR

tables). For that purpose a priority table of requirements is

designed, shown in figure 6. Take condition table from the

SCR tables and assign a priority to all functionalities, by

keeping in view the relationship between two events and

user assigned priority of each of the functionality. The

priority table consists of four columns; priority,

functionality, time allotted and mark the developed.

Figure 6. Priority Table

After designing priority table the next step at this phase

is to draw a Gantt chart to show the schedule of the project.

The Gantt chart shows graphically the time period required

for the development of a particular task. It also shows that

which task can be done in parallel to the other. In addition

to priority table and Gantt chart the size of team, code

ownership, working hours, sitting arrangement and

programming pair are also planned.

i. Team Size

It is required to plan that how many members will be in

your team. In FXP we ideally suggest to choose small

teams.

ii. Code Ownership

The code ownership is also required to be planned at

this phase. The FXP can support both ownerships. The

owner of the code can change the code, or Collective

ownership may be desired and provided. When owner pair

is only allowed to change, the details of the code there are

less chances of disaster situation. When we allow the

collective ownership, one of the member in each pair

knows about FM, we are using. So they can understand the

code and consequently there may be more disaster

situations.

iii. Working Hours

We require our developers to be relaxed during the

working hours. For that purpose ideal working hours

suggested for FXP are 35-40 hours in a week. We advise

that do not plan more than 40 hour week because a tired

developer produces more and more errors.

iv. Sitting Arrangement

Plan a comfortable sitting arrangement. As we support

pair programming so the arrangement will have two chairs

on single PC.

v. Planning Pair

For FXP model we need a programming pair with at

least one of the member as FM expert, and the other can be

a programmer or FM expert. The expert is supposed to

have enough knowledge about FMs, especially about SCR,

algebraic specification and DbC. If in any case the expert is

not that much familiar with the FMs, short training will be

arranged.

Spike Solution

It is mandatory to discuss “spike solutions” introduced

in the XP model. The spike solutions are the solution to the

problems considered tough from technical and design point

of view. In XP it is a solution to a particular problem only,

while all other aspects of system are ignored. For most of

the time the spike is not good to have. For FXP we do not

strictly suggest the spike solution to be implemented for

difficult problems, because they solve a design problem

from one perspective and ignore all other aspects of the

system as a whole. That is why it is not used by FXP

model. Spike solutions are considered good when

developers are knowledge limited, and not when time

limited [19].

Iteration to Release

At this phase the set of tasks from release plan are

grouped into iteration (the set of related functionalities

needed to be developed together) on the basis of their

priority. Ideally iteration does not take more than 3 weeks.

At this stage the functionalities with failed acceptance tests

are also reviewed. Afterwards programming pair writes all

possible test cases for all functionalities. When all possible

test cases are written algebraic specification will be written

for each mode of the system. In XP the selected user stories

are translated to task cards/index cards (the story cards

written in developer’s language). While writing these index

cards if any task is found duplicated then it can be

removed.

Algebraic Specification

In FXP Model we replace the index/task cards by

algebraic specification. These specifications provide a more

formal view of a task, and data type. The algebraic

specification describes the requirements of a task and

functions of a data type more clearly and concisely, to

make the programmer’s job easier as compared to the index

cards. The FM experts write the algebraic specification for

a system. We prefer the algebraic specification to be

written before coding because in this way we can get a very

concrete, formal and to the point description of the

40

T. Saeed et al / IJNES, 8 (3): 35-42, 2014

requirements and functionalities to be implemented, in a

mathematical way. It specifies all the functions performed,

their signatures, return values of each function, and axioms

to evaluate the functions. The axioms describe all the

possible conditions of a function. Afterwards the team

decides that which functionality is required to be developed

first. This can be viewed from the priority table, the

developers sign up the task, and estimate the time required

to develop.

Coding

Once algebraic specification is written for iteration it is

passed on to the programming pairs to translate it to code.

The algebraic specification also supports coding standards,

the one followed in the specifications. At this phase a

working iteration will be developed. One thing to note here

is that in the pair of programmers at least one of the

members should have to have training about formal

methods. The FM expert will analyze the algebraic

specification and help his partner for

implementation/coding.

Acceptance Test

At the completion of coding the latest version of

running iteration is passed on to the acceptance test phase.

At this phase the running iteration is checked against each

requirement specified by the user and if any error/bug is

founded it will returned back to the iteration planning or

coding phase.

In FXP model we associate the Design by Contract

(DbC) conditionally with this phase. The purpose of

associating DbC at this phase is to secure the development

of safety critical system or a complex OO system.

Design by Contract

The DbC is applied at the acceptance phase only for the

Safety Critical Systems (SCS), and for complicated Object

Oriented (OO) systems. For the design of a SCS the

developer is required to have balance of high quality skills

with the aspects discussed by [20]. DbC is applied on these

systems to form bugs-free SCS and OO systems, because

designing and reviewing OO system is annoying,

burdensome, and costly. In the case of SCS, we have spent

lots of cost on their implementation for example in case of

an aircraft system; a single lapse is enough to destroy the

whole system. So in both of these cases it is better to design

a contract rather than destroying whole system. We do not

suggest it mandatory for simple and smaller projects

because it does nothing except increasing the cost of the

system. So by following the key point of designing

software “do not spend money on unneeded features” we

does not recommend it for simple and small projects.

DbC is a contract between the running iteration and the

user. This does not allow the user to violate the contract.

This contract is implemented by languages like JML and

Eiffel etc. DbC include a pre-condition, invariant and a post

condition. These three components of DbC will be written

using JML, java or Eiffel etc. The DbC is used to blame the

faulty section of the program. If the implementation of the

program breaks the contract then it is informed and will be

fixed later on. The DbC add the checks for efficiency of the

program, and also prevent it from inefficient defensive

checks.

Small Release

If the iteration passed the acceptance test it will be

released. Now the user checks it from each perspective and

approve. If the customer found any problems in the release

or want to change any requirement then user will give

feedback and communicate with development team/team

leader. If any change in requirements is requested it will be

implemented by passing through all the phases of FXP

model.

RESULTS AND DISCUSSIONS

In this section the validity and acceptance of FXP

model is explained. A survey through questionnaire is

conducted from the professionals of software industry

working in different software houses.

The use of formal methods is reduced because of two

main reasons;

i. The developers are generally less inclined to change

their old way out, to avoid difficulties.

ii. They considered the same as difficult and time

consuming, and eventually more costly, because of

required level of mathematical formulations.

However for the design of SCS and complex systems it

is required to have good quality assurance abilities, like

FMs and quality assurance tools. The main hazard in the

acceptance of FXP model is cost of FMs. The

professional’s opinion about the cost of FMs used in FXP

model is illustrated by figure 7. The survey concluded that

the FMs are not as much costly and awful as they are

considered in the past years because total of 53%

professionals disagree with the statement that the formal

methods are costly.

0%

47%

40%

13%

0%

10%

20%

30%

40%

50%

Strongly

agree

Agree Disagree Strongly

disagree

Cost of FMs

Percentage

Figure 7. Cost of Formal Methods

About 80% of the professionals support the formal

specification of the requirements. At the initial stage of

FXP model the SCR is used to specify requirements/user

stories in tabular form. The purpose of specifying

requirements in SCR tables is to considerably reduce the

ambiguity in requirements and their specifications. The

survey results show that it is good practice to describe the

requirements formally by using SCR. The results shown in

figure 8 illustrate that the professionals appreciate the use

of SCR. This shows that 86% of the professionals support

the use of SCR tables for requirements specifications.

It is studied that the GBHL can be applied to represent

the requirements formally and graphically by the

construction of “class graph” and “state graph”. We get

positive response by the professionals about that, as shown

in figure 9. However it is not suggested for FXP model,

because when cost of applying GBHL is analyzed it is

recognized that this mapping costs more than its relative

benefits.

41

T. Saeed et al / IJNES, 8 (3): 35-42, 2014

Use SCR

13%

73%

13%

0%
0%

10%

20%

30%

40%

50%

60%

70%

80%

Strongly

agree

Agree Disagree Strongly

disagree

Percentage

Figure 8. SCR For Requirements Specification

Use GBHL

33%

53%

7% 7%

0%

10%

20%

30%

40%

50%

60%

Strongly

agree

Agree Disagree Strongly

disagree

Percentage

Figure 9. Using GBHL

Algebraic specification is written at the iteration

development phase before coding. Figure 10 demonstrates

that the cost of failure for larger project is more than the

cost of representing the tasks/functionalities in algebraic

specification. 73% of the professionals agreed that the cost

of failure is more than the cost of applying algebraic

specification.

In FXP model the need of spike solution is reduced

because of algebraic specifications and use of formal

methods at initial phases. The professional’s opinion about

the creation of spike solution is shown in figure 11. About

80% of the professionals agreed that if we use FMs at

initial stages of development, there remains no need for

spike solution.

Applying Design by Contract (DbC) is not suggested

for simple projects while for complex Object Oriented

systems, life critical systems and SCS, it is strongly

recommended to write a contract, because the cost of

failure of these systems is more than the cost of applying

DbC. The figure 12 shows that 87% of the professionals

agreed that the cost of applying DbC is less than the cost of

failure.

33%
40%

27%

73%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Strongly

agree

Agree Disagree Total

agree

Cost of failure vs cost of algebraic

specificatons

Percentage

Figure 10. Cost of Algebraic Specification

20%

60%

13%

7%

0%

10%

20%

30%

40%

50%

60%

Strongly

agree

Agree Disagree Strongly

disagree

Spike solution

Percentage

Figure 11. Spike Solution

Applying Design by Contract

7%

73%

7%

13%

Strongly

agree

Agree

Disagree

Strongly

disagree

Percentage

Figure 12. Cost of Applying DbC

Some of the professional’s opinions about the

acceptance of this proposed FXP model are given in table

1.

CONCLUSION

In this research a new formal agile model FXP was

introduced which is preferred to use for safety critical

systems and complex OO systems. In this regard XP is

42

T. Saeed et al / IJNES, 8 (3): 35-42, 2014

selected from agile methodologies, and SCR, algebraic

specification and DbC from FMs. The FMs are mapped on

XP to introduce a new FXP model. This model gives us

best quality software for 99% of the times. No doubt the

FMs increase the cost but in this research work we

concluded that the quality they provide is more than its

cost. The survey results showed that this model can bring

good change in the traditional XP model in future.

Table 1. Professional’s Comments on FXP Model

Name Comment

Anonymous

“It is a good step towards the
betterment of software industry. It would

surely help making new innovations in

this industry.”

Muhammad
Yousaf

“The Extreme Programming

discipline will change entirely the SDLC,

and hence will improve the software

development practices in the coming
times.”

Anonymous
Yes! This will bring a closed

coordination and bridging gaps in SDLC.

Anonymous

“Mapping exercise is very important
and will not improve the software

delivery life cycle but customer

satisfaction will also improve.”

Khalid Rasheed

“The mapping of Formal Methods on

Extreme Programming (XP) can bring a

good change resulting better development
in software industry.”

M. Adnan

Khadim
“Hope so”

Abu Sufyan

“It’s all depends upon the nature of
project, resource availability and their

capacity as well as budget and project

timelines.”

Nadeem
Aamir

“Management’s decision prevails.”

Future Work

It is required to automate the use of FMs and a practical

research is required to prove the efficiency, and correctness

of the proposed model. The FMs should be mapped to other

agile development models as well as traditional

development models.

REFERENCES

[1] Beck, K. 1999. Embracing Change with Extreme

Programming. IEEE Computer. (CA, USA). 32(10): 70-77.

ISSN: 0018-9162.

[2] Lindstrom, L. and R. Jeffries, 2004. Extreme

Programming and Agile Software Development

Methodologies. Information Systems Management.

(Florida, USA). 21(3): 41-52.

[3] Beck, K. and C. Andres, 2004. Extreme

Programming Explained: Embrace Change. 2nd Ed.

Addison-Wesley Professional. (MA, USA). ISBN:

0321278658.

[4] Paulk, M. C., 2001. Extreme Programming from

a CMM Perspective. Software, IEEE. (PA, USA). 18(6):

19-26.

[5] Bowen, J., and V. Stravridou, 1993. Safety

Critical Systems, Formal Methods and Standards. IEEE

Software Engineering Journal. (NJ, USA). 8(4): 189-209.

ISSN: 0268-6961.

[6] Meyer, B., 1992. Applying Design by Contract.

IEEE Computer Society. (CA, USA). 25(10): 40-51.

[7] Erickson, J., K. Lyytinen and K. Siau, 2005.

Agile Modeling, Agile Software Development, and

Extreme Programming. The State of Research. Journal of

Database Management (JDM). (MO, USA). 16(4): 88-100.

[8] Abrahamsson, P., O. Salo, J. Ronkainen and J.

Warsta. 2002. Agile Software Development Methods

Review and Analysis. VTT Publications 478. (Oulu,

Finland). ISBN: 951-38-6009-4:107 p.

[9] Abrial, J. R. 2013. “Set-Theoretic Models of

Computations.” Springer-Verlag Berlin Heidelberg.

(Marseille, France). pp. 1–22. LNCS: 8051.

[10] Victor, K. R., 2013. Adaptable Model-Driven

Engineering for Formal Methods Integration with Agile

Techniques for Design of Software Systems. Academic

Research International. (Lodhran, Pakistan). 4(1): 446-456.

ISSN: 2223-9553.

[11] Wolff, S., 2012. Scrum Goes Formal: Agile

Methods for Safety-Critical Systems. In Proc. of IEEE

Conf. on Formal Methods in Software Engineering:

Rigorous and Agile Approaches. (Zurich, Switzerland). pp.

23-29.

[12] Zuo, A., J. Yang and X. Chen, 2010. Research of

Agile Software Development Based on Formal Methods. In

IEEE Conf. on Multimedia Information Networking and

Security. (Nanjing, China). pp. 762-766.

[13] Larsen, P. G., J. S. Fitzgerald and S. Wolff, 2010.

Are Formal Methods Ready for Agility? A Reality Check.

In Proc. of 2nd Int. Workshop on Formal Methods and

Agile Methods. (Pisa, Italy).Vol. P-179. pp.13-25. ISBN:

9783885792734.

[14] Lowe, M., 2010. Formal Methods in Agile

Development. Electronic Communications of European

Association of Software Science and Technology. (Berlin,

Germany). 30: 1-6. ISSN: 1863-2122.

[15] Black, S., P. P. Boca, J. P. Bowen, J. Gormanand

and M. Hinchey, 2009. Formal Versus Agile: Survival of

the Fittest. IEEE Computer Society. (CA, USA). 42(9): 37-

45. ISSN: 0018-9162.

[16] Le Traon, Y., B. Baudry and J. M. Jezequel,

2006. Design by Contract to Improve Software Vigilance.

IEEE Transactions on Software Engineering. (CA, USA).

32(8): 571-586.

[17] Bowen, J. P. and M. G. Hinchey, 1995. Seven

More Myths of Formal Methods. IEEE Software. (Oxford,

UK). 12(4): 34-41.

[18] Tretmans, J., K. Wijbrans and M. Chaudron.

2001. Software Engineering with Formal Methods: The

Development of a Storm Surge Barrier Control System

Revisiting Seven Myths of Formal Methods. Journal of

Formal Methods in System Design. (MA, USA). 19(2):

195-215.

[19] Pressman, R. S., 2010. Software Engineering: A

Practitioner’s Approach. 7th Edition. McGraw-Hill Higher

Education. (Singapore, Asia). pp. 65-93 and 557-582.

ISSN: 0071267824.

[20] Bowen, J., 2000. The Ethics of Safety-Critical

Systems. Communications of the ACM. (NY, USA).

43(4): 91-97.

