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Abstract  
The transient stress field around a finite crack emanated from a circular hole is obtained using integral transforms method. The normal 

and shear tractions applied to cracks surface. Firstly, the dynamic stress concentration factor around the circular hole without crack is 
calculated and secondly, the concentration stress around the hole is applied to the crack surface and the stress filed in the crack tip and 
dynamic stress intensity factor is obtained. Because of the normal and shear stress, the mode I and II of fracture happen. Finally, the results 
are compared with previous studies.   
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INTRODUCTION 
 

In structures, due to the stress concentration around the 
holes, particularly, cracks will initiate and propagate from 
the hole. 

Fracture behavior of materials under impact and 
dynamic loads is different from static mode. Inertia, 
reflection of stress waves, and the effects of the strain rate 
dependent behavior of material are among the differences 
between dynamic and static fracture behaviors. 
Consequently, problems for dynamic stress concentration 
factor around a hole got much attention by many 
investigators. 

Pao studied The Stress concentrations around a circular 
cavity in an infinitely extended, thin elastic plate, during 
passage of plane compressional waves. In this research, the 
harmonic waves were applied to the circular hole and the 
dynamical stress concentration factors were found to be 
dependent on the incident wave length and Poisson's ratio 
for the plate.[1] 

Diffraction of a Pressure Wave by a Cylindrical Cavity 
in Elastic medium was investigated analytically by Baron 
and Matthews. In this research, the stress concentration 
around a circular hole under plane shock wave whose front 
is parallel to the axis of the cavity, were calculated.[2] 

In the similar paper, Baron and Matthews studied the 
displacement and velocities produced by the diffraction of a 
pressure wave by a cylindrical cavity in an elastic 
medium.[3] 

The experimental method, method of boundary 
Integrals and Laplace transform, the stress concentration 
around the cavity in the strip and shell and Scattering of 
flexural wave in a thin plate with multiple circular holes are 
some of the important researches about dynamic stress 
concentration factor and wave diffraction.[4-10]  

Sih was one of the researchers who conducted an 
analytical study on the dynamic stress intensity factors of 
cracks and presented most basic methods for stress fields 
around crack tip and dynamic fracture [11]. 
 

Frund studied semi-infinite crack on unbounded body. 
He also studied dynamic stress intensity factor on different 
fracture modes using step function. In this analysis, the 
equations, which were obtained using the dual Laplace 
transform, were simplified and solved using the Wiener-
Hopf method [12]. 

 Sih and Embely in one article and Stephen and Tsin-
Hwei in another article discussed the behavior of crack 
analysis with a limited length on an unbounded body in a 2-
D mode. Using the Laplace transform and then the Fourier 
sine and cosine transforms, they analyzed the wave 
equations and the fields created around a crack. The 
obtained dual integral equations were solved using the 
numerical methods and the value of dynamic stress 
intensity factor around the crack was determined [13-14]. 

The effect of stress concentration on stress intensity 
factor may happen in cracks that emanated from holes. 

Li-qing  and Bing-zheng studied the dynamic stress 
concentration factor for a single hole-edge slant crack in a 
finite plate by finite element method. Due to the direction 
of crack relative to stress wave moving path, the mode I 
and II happen. [15-16] 

Meguid and Wang investigated theoretically the 
treatment of the dynamic interaction between a crack and 
an arbitrarily located circular hole near its tip under 
incident anti-plane shear wave. The method of integral 
transform technique has been used for solving the 
equations.[17] 

The scattering and diffraction of SH-waves and 
dynamic stress intensity factor in the crack emanating from 
circular or elliptical holes have been studied by several 
researchers.[18-21] 

Also, the effect of anti-plane and the mode III of 
fracture and dynamic stress intensity factor emanating from 
holes have been investigated for different kinds of material 
such as piezoelectric, electromagnetic and etc.[22-25] 

As we can see, the large numbers of these researches 
have been done numerically and analytically. 

In experimental investigation for determining the 
dynamic stress intensity factor in crakes, originating from

Internatıonal Journal of Natural and Engineering Sciences 8 (2): 47-56, 2014 

ISSN: 1307-1149, E-ISSN: 2146-0086, www.nobel.gen.tr 

 



48 
 

M. Damghani Nouri and H. Rahmani / IJNES, 8 (2): 47-56, 2014  

holes, or radial crack we can mention the studies of 
Malezhik  et al.[26]. They studied the dynamic fracture of 
plates weakened by holes with edge cracks and subjected to 
impulsive loading is studied using the dynamic photo 
elastic method. 

Most of the references discussed earlier are for the 
effect of SH-waves and Anti-plane waves on dynamic 
stress intensity factor on crakes emanated from holes. 
There is a lack of results for the effect of in-plane waves on 
Dynamic stress intensity factor for cracks emanated from 
holes. 

The present paper is based on the results obtained in [2, 
7-8, 13] and investigates the dynamic interaction between 
hole and crack. The main objective of this study is to 
evaluate stresses field distribution and dynamic stress 
intensity factor in a crack that is emanated from a hole in an 
elastic medium. The paper is organized as follows: The 
problem statement is given in Sect. 2. The basic equation 
and solution of them is discussed in Sect. 3, and the 
numerical procedure, a series of numerical results and their 
comparison with old studies and discussion is shown in 
Sect. 4, 5, while and conclusions are given in Sect. 6. 
 
PROBLEM STATEMENT 
  

To determine the dynamic stress intensity for a crack 
emanated from a hole, firstly we need to know the stress 
fields near the tip of the crack [27-29]. In this study, firstly 
the stress distribution around the circular hole is calculated 
by the method that is solved in [2] and [8]. In those 
researches the stress around a circular hole are calculated 
analytically. Because of the difference in coordinate 
systems considered in those papers, we assume a new 
coordinate system and the analytical equation and solution 
of references [2] and [8] are rewrote and resolved for this 
coordinate system by a MATLAB code. After calculating 
the stress distribution around the circle hole, the stress 
distribution in the x direction and in angle o270 calculated 
and this stress applied to the crack plane. 

Finally the dynamic stress intensity factor equation is 
obtained and solved for the crack. 

Consider an infinite elastic medium which contain a 
cavity as shown in  

Figure 1. A traction shock wave in time t=0 in direction 
–x, lies on a circle of radius R and diffract. The direction of 
the stress is opposite of the direction of motion because the 
wave is tensile stress. 
 

 
 
Figure 1. Shock wave propagation around the hole 

 
When the first point of hole is acted on by the front of 

shock wave, the stress wave diffracts and a new distribution 
of stress forms around the hole. For calculating the new 
stress distributions around hole consider a coordinate 

system as shown in  Figure 2. 

 Figure 2. Coordinate system used for stress concentration analysis 
 
The stress distribution around the circular hole was 

calculated in [2]. 
Based on [2], the hoop stress distribution around the 

hole is calculated from equations 1-4. 
Due to the direction of a crack, we need to know the 

hoop stress only because the direction of the crack in later 
analysis is so that the radial and shear stresses are 
neglected. 
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After /t R C

p
 , the radial crack is affected by the 

front of shock wave.  
In these equations, cp is the velocity of plane stress, R is 

the radius of circular hole,   is a complex variable and 
H(2) is the hankel function(Bessel function of third kind). 

These equations are solved by a MATLAB code and 
the hoop stress distribution around the circular hole is 
calculated. For this analysis, we assume that a tensile stress 
wave with magnitude 0  applied to the infinite 2D plate 

with a circular hole. 
 
Figure 3 and Figure 4 shows the hoop stress distribution 

around the circular hole.   
To validate the results for the stress concentration that 

is obtained in this research, 4 point is selected in around the 
circle as showed in Figure 5. 

The history of stress in the a1, a2, a3 and a4 is showed in  
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Figure 6. As it can be seen, the value of / 0 


 in 

the circular boundary(r=R) is compared from [2] and the 
MATLAB code from this research( the yellow dashed 
curve and the solid black curve). Because of the direction 
of stress wave (pressure wave and tensile wave) these 
curves are similar in value and opposite in the direction. 

 

 
 

Figure 3. Hoop stress distribution in time 3.2 Ct/a around the hole 
in 3D view 
 

 

 
Figure 4. Hoop stress distribution around the circular hole in 2D 
view 

 

 
Figure 5. Selected points for calculating the hoop stress 
 

 

 
 

 
Figure 6. Hoop stress around the hole 

In the  
Figure 7 the stress changes via distance from the circle 

boundary in θ=270o  is showed in the time 3 Ct/20 that have 
the maximum value. 
 

 
 
Figure 7. Stress distribution in x direction 
 

As mentioned later, the purpose of this research is to 
calculate the DSIF in a crack that is emanated from a hole 
in radial direction and inθ=270o . so that the crack is exactly 
perpendicular to the stress wave propagation direction. Due 
to the direction of crack, it is needed to know the relation 
between stress, time and location in the crack path. For this 
reason, stress distribution is calculated for the line in x 
direction with the length of R as shown in  

Figure 8. the amount of radial and shear stresses are 
negligible in compared with hoop stress and so only the 
mode I of fracture occurs and the shear stress wave 
distribution and other modes of fracture is neglected.  

 
 
Figure 8. Stress entrance to the crack 
 

Now we consider that a crack is emanated from the 
hole. When the circular hole with crack is acted on by 
stress wave, the front of wave is diffracted by the boundary 
of hole. Then the concentrated stress around the hole acted 
on the crack. The mathematical relation of this stress is 
calculated in the equation 5 via time and distance from 
circular hole.  

 
4 3 2

θθ 4 3 2

x x x xσ (x)=-0.85 +4.16 -5.15 -2.68 +7.8
R R R R

 (5)  

 
In [13], the dynamic  stress intensity factor in the crack 

under impact load were calculated. But in this research, it’s 
considered that the stress distribution is uniform and the 
distribution of stress via position is constant. In the other 
word, the changes of the stress via x are constant.  

Based on the method that used in ref [13] and [14], the 
coordinate system in Figure 9 is chosen for analyzing the 
dynamic stress intensity factor. 
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Figure 9. Reference coordinate for crack analysis 
 

The Basic Equation And Solution  
Boundary conditions in y=0 is as relation 6[13]: 

 
τ (x,0,t)=0, x <xy
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Where 
 

0 t<0
H(t)=

1 t>0




 
 

 
To solve the stress fields around the crack, two 

displacements functions of ( , , )u x y t  and ( , , )v x y t are 
assumed, which both are true in the wave equation[11]. 

Therefore: 
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u(x,y,t) u(x,y,t) 1 u(x,y,t)

+ =2 2 2 2
x y C tp

2 2 2
v(x,y,t) v(x,y,t) 1 v(x,y,t)

+ =2 2 2 2
x y C tp
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In these equations, Cp is longitudinal wave speed, Cs is 

shear wave speed, u is displacement at x, and v is 
displacement in y direction. 

The relationship between stress and displacement fields 
is defined as follows: 
 
τ =λu δ +μ(u +u )ij k,k ij i,j j,i  (8)  
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 (9)  

 
As the analytical solution is difficult in a time-place 

environment, to solve them, they are first taken to Laplace 
environment. Then, With respect to the geometrical 
symmetry, the Fourier sine and cosine transform is used for 
solving the problems.    

To do so, Laplace transform is defined as follows: 

1-st st
f(s)= f(t)e dt f(t)= f(s)e dt0

2πi
Br

   (10)  

 
Now, Laplace is taken of equation 7 versus time 

consequently: 
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Now, the Fourier sine and cosine transform, which is 

defined as relation 12 and 13, are used for transforming 
relation 11 into an ordinary differential equation. 

2
F(p)= f(x)sin(px)dx f(x)= F(p)sin(px)dp0 0

π

 
   (12)  

2
F(p)= f(x)cos(px)dx f(x)= F(p)cos(px)dp0 0

π

 
 

 
(13)  

By applying the transforms of relation 12 and 13 in 
equation 11, we have 

2 2
U(p,y,s) s2

-p U(p,y,s)+ = U(p,y,s)2 2
y Cp

2 2
V(p,y,s) s2

-p V(p,y,s)+ = V(p,y,s)2 2
y Cp









 (14)  

Which are two ordinary differential equations and their 
general solution is as relation 15: 
 

-γ y γ y1 1U(p,y,s)=A(p,s)e +A (p,s)e1
-γ y γ y1 1V(p,y,s)=B(p,s)e +B (p,s)e1

 (15)  
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Where

1
2 2

s2
γ = p +1 2

Cp

 
 
 

  and 

1
2 2s2

γ = p +1 2
Cs

 
 
 

and A (p,s)1  and 

B (p,s)1  are vanished because when y tends to infinity, 
displacement value cannot be infinite. By taking reverse 
integration of equation15, we have: 
 

-γ y1u(x,y,s)= A(p,s)e sin(px)dp0



 
(16)  

-γ y1v(x,y,s)= B(p,s)e cos(px)dp0
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Now, we have two equations based on x, y and p. To 

impose boundary conditions, first, Laplace transform is 
applied to them. Therefore: 
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(21)  

v(x,0,s)=0, x >0  (22)  
 

By replacing equations 16 and 17 in equation 19 and 
applying boundary conditions 20, 21 and 22 and inserting 
y=0, we have: 
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by replacing 16 and 17 in equation 18 and applying  
boundary conditions 20, 21 and 22 and inserting y=0: 
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(24)  

Meanwhile, with respect to the boundary condition 22, 
we have 
 

v = D(p,s)cos(px)dp 00y=0

   (25)  

 
As a result, a dual integral equation is obtained, which 

is defined as follows: 
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To solve the above dual integral equation, we assume 
that[13]: 

a
D(p,s)= φ(τ,s)J (pτ)dτ00

  (28)  
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Also, using of two properties of Integral equation that 
shows in relations 29 and 30 [16]. 

 
x g(τ)dτ

f(x)= , 0<ζ<12 2 ζa (x -τ )

x2sin(πζ) d τf(τ)dτ
g(x)= 2 2 1-ζaπ dx (x -τ )





 (29)  

1
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0, x>τ










 (30)  

 
By replacing equation 28 in relation 26 and using 

relations 29 and 30, we have: 
 

a
φ(τ,s)+ φ(θ,s)K(θ,s)dθ=

0
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(31)  

To solve the above equation, φ(θ,s)  value should be 
calculated. By putting this value in relation 31 and 
calculating φ(τ,s)  and finally replacing it in 28 and the 

result in equation 24, σ y  value is obtained.    

Meanwhile, for r=x-R-a,r<<a , dynamic stress intensity 

factor in a Laplace environment and 
y  stress value are 

as relation 32[30]: 
 

K (s)1σ =y
2πr

 

(32)  

 
Where, r is the point very close to crack tip. 
Therefore 
 

f(a)
K =1

a
 

(33)  

 
To solve equation 31, first, the relation is non-

dimensional by changing the following variables. 
 

 

τ=ar, θ=aρ, δ=ap  (34)  

 
As a result: 
 

1
2f(t)=f(ar)=-σ ar Φ(r)0
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1
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(35)  

After solving the above relation and replacing it in 
relation 33, we have the equation 36. 

The dynamic stress intensity factor in a Laplace 
environment will be obtained using relation 37 

To calculate this factor in a place-time environment, it 
is necessary to apply the reversed Laplace transform as 
showed in equation 36. 

The numerical method and software MATLAB cod are 
used for calculating relation 37.  

The method used for numerical solution of this relation 
is mentioned in[31-32]. By calculating (1, )s  and 
including it in relation 37, the dynamic tension intensity 
factor is calculated.  
 

1
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4 3 2
x x x x
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R R R R R+bR<x<R
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4
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× -0.28 +1.04 s6
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1
2σ a st0 ˆK (t)= Φ(1,s) Q(x)×f(s) e ds1 Br2πi
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x x x x
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x x x x
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4
C C1 p p

f̂(s)= -0.28 +1.04 s+6
s R R

Cp
1.7

R



 
 
 

 
 
 

    
    

   
3 2

Cp2 3
s +1.38 s

R

   
   
    

 

(37)  

 
DISCUSSION 
 

As mentioned earlier, a large number of cracks are 
emanated from the hole because of the stress concentration. 
Knowing the dynamic stress intensity factor for the 
emanated cracks helps us to predict the probability of crack 
propagation. 

Analytical solution is used to calculate the dynamic 
stress intensity factor in this study. 

The final equation is solved by numerical method in 
MATLAB code. 

To validate the results, firstly, we assume that the 
amount of R tends to zero and the results are compared 
with a finite crack under tensile impact pulse in [13]. 

The results are showed in  
Figure 10. 
After validating the accuracy of the obtained equation, 

we compare the effect of crack length in the equation. 
This comparison is done for several different crack 

sizes via circle radius. The ratios of the crack size to circle 
radius is considered 0.2, 0.4, 0.6, 0.8, 1, 2.in Figure 12- 
Figure 16 a comparison is done between dynamic and static 
stress intensity factor. And also, the results to different ratio 
of crack size to circular hole radial is shown in Figure 17. 

 
 

 
 
Figure 10. Comparison between last researches and equation 37 
result. 
  

 

 
Figure 11. Dynamic stress intensity factor in the a/R=0.2 

 
Figure 12. Dynamic stress intensity factor in the a/R=0.4 

 
Figure 13. Dynamic stress intensity factor in the a/R=0.6 

 
Figure 14. Dynamic stress intensity factor in the a/R=0.8 
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Figure 15. Dynamic stress intensity factor in the a/R=2 and 

 
Figure 16. Dynamic stress intensity factor in the a/R=1 

 
Figure 17. DSIF for different crack size 

 
As we can see in Figure 17, with increasing the crack 

length, the effect of the stress concentration in the dynamic 
stress intensity factor is reduced. These changes of the 
Dynamic stress intensity factor are like static state but the 
comparison of the peak of the curves with static ratios 
shows different results. After some time the effect of the 
inertia reduced and the amount of stress intensity factor 
tends to the static SIF. 

When the crack is not prependicular to the stress wave 
propagation direction, mode II of the frachture happens.  
Due to the similartiy of the analytical method for 
calculating the mode II of fracture under shear stress with 
normal stress, the results only compared in Figure 18 - 
Figure 21. 

 

 
Figure 18. Normal stress distribution around the hole 

 
 

Figure 19. Normal stress distribution around the hole 
 
 

.  
Figure 20. KI in different angles around the hole 

 

 
Figure 21. KII in different angles around the hole 
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As we can see in the figures, the second mode of 

fracture on in other word, the shear stress in 45
o

  is 
maximum.  
 
CONCLUSION 
 

Analytical solution is used to solve the dynamic stress 
intensity factor for the edge line cracks that emanated from 
the hole. Firstly, the stress concentration equation around a 
hole is solved and the stress distribution equations 
calculated around the hole. 

Secondly, by applying the concentrating load equation 
to the crack plan, the basic equation of stress wave 
propagation in an elastic medium are derived. These basic 
equations are solved by Laplace and Fourier transfer to 
solve the displacements fields and stress distribution 
around the crack tip to calculate dynamic stress intensity 
factor. 

Finally, the derived equations are solved numerically to 
calculate the dynamic stress intensity factor for different 
crack size.  

The obtained results show that by decreasing the ratio 
of the crack length to the circle radius, the dynamic stress 
intensity factor increases because in small ratios, stress 
concentration   has more effects. 

Moreover, it’s possible to predict the probability of the 
crack propagation by the results of this paper for a single 
edge crack that emanated from a hole. 
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