

Software Quality Assurance of Medium Scale Projects by using DXPRUM Methodology

Muhammad FAHAD1* Salman QADRI2 Syed Shah MUHAMMAD1 Mujtaba HUSNAIN2

1Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan
2Department of Computer Science and Information Technology, The Islamia University of Bahawalpur, Pakistan

*Corresponding author: Received: March 20, 2014

 Email: ms100400039@vu.edu.pk Accepted: April 28, 2014

Abstract

Agile methods are being used as a new way of developing software. They are basically used to fasten software development cycle by

keeping an eye on its quality. Using Agile methods in any project along with quality assurance perspective is a crucial task. Many software

developing organizations are using Agile methods now a days in their projects to reduce cost involved in a project. Agile methods are best
suited for small projects as they require less resources and able to generate output in less time. Testing of these small projects is also an easy

task. However, many organizations are also using Agile methods for medium and large scale projects. These projects also have large as well

as geographically distributed teams. Further testing of these projects cannot be done on regular basis due to the size of the projects. Assuring
quality of these projects using Agile method is a challenging task. Many Agile methods are being used by software developing organizations

to build high quality software. Each Agile method has its own strengths and weaknesses. This research work is based on purposing a novel

hybrid Agile methodology DXPRUM. The DXPRUM is a combination of three of the Agile models named as Dynamic Systems
Development Method, Extreme Programming and Scrum (D comes from DSDM, XP from Extreme Programing, RUM from Scrum). The

objective is to combines the strengths of all the three Agile methods by removing their weaknesses. The main strength of DXPRUM will be

the in time delivery of the project to customer with reduced cost and high quality.
Keywords: Dynamic Systems Development Method, Extreme Programing, Agile Software Development, Scrum, SDLC

INTRODUCTION

Software engineering can be depicted as a phenomenon

which embodies number of steps for the purpose of

producing high quality software according to the

requirements of the clients [1]. Creation of high quality

software is an intricate task. It is due to software

engineering that we are able to design software and even

improve its quality throughout software development life

cycle (SDLC). A framework which provides different ways

to structure, plan, and control the process of developing

software is called a software development methodology [2].

A methodology consists of policies, principals, methods

and processes used to implement software. Many software

development methodologies are available in software

industry. Every methodology has its own software

development life cycle which differ it from other ones.

Some of the famous names include Waterfall, prototyping,

incremental and spiral development. These are traditional

ways of development of software and are recognized as

heavy weight methodologies [3]. These methodologies

contain gigantic documentations, less customer

involvement and low flexibility for creeping requirements.

A survey by Cockburn shows that in case of a business

change, 65% of the delivered functionalities are rarely used

or are never used [4]. During last two decades Agile

software development methodologies become extremely

famous in software industry. These are basically light

weight development methodologies. Some of the famous

Agile methodologies includes scrum, extreme programing

(XP), dynamic systems development method (DSDM),

feature driven development (FDD), Kanban, Lean Software

Development etc. Agile methodologies are best known for

their fast development life cycles, less documentations and

low costs for projects [5]. In Agile the developers and

testers work in a strong collaboration in order to reduce

chances of errors [6]. Agile Methodologies are not rigid

and contains more customer involvement as a quality

assurance practice [7]. Each software development

methodology has its own pros and cons. According to a

survey, the success rate of Agile software development is

about 71.5% [8]. Agile methodologies are being adopted by

more and more companies in recent past due to rigid

behavior of traditional frameworks and because of the

rising complexity of the software projects [9].

In order to cope with pros and cons of different

methodologies, the software development organizations are

also using hybrid models for software development [10].

These hybrid models are combinations of two or more

methodologies and are used with the quest to merge their

benefits at one place so that organizations can have best of

them available for obtaining maximum output [11].

According to Livermore, Scrum is often combined with

Extreme Programing (XP) practices [12]. Both Scrum and

XP has different flavors. According to Pressman, In order

to build a successful software increment, DSDM may be

combined with XP. This will actually generate a combo

methodology which defines a powerful process model (the

DSDM life cycle) by using nuts and bolts practices (XP)

[13]. Some other researchers combine Agile with

traditional methodologies. Lina and Dan combine Scrum

with CMMI in order to get a better framework for small

and medium sized organizations [14]. Keeping all these

points in view, the researcher decided to propose a new

Agile software development model by combining three

already existing models (DSDM, XP and Scrum) and

naming it DXPRUM (D comes from Dynamic Systems

International Journal of Natural and Engineering Sciences 8 (1): 42-48, 2014

ISSN: 1307-1149, E-ISSN: 2146-0086, www.nobel.gen.tr

mailto:ms100400039@vu.edu.pk

43

M. Fahad et al / IJNES, 8 (1): 42-48, 2014

Development Method, XP comes from Extreme

Programing and RUM comes from Scrum). The new model

contains all the strengths of three already existing models

(DSDM, XP and Scrum) by removing their weaknesses.

The model also provides better results in terms of quality

assurance when applied to medium scale projects. The

proposed model will also work well with continuously

changing requirements. A brief introduction of these three

Agile methodologies is as follows and also shown in figure

1.

Figure 1. What Agile Methods Covers

Dynamic Systems Development Method (DSDM)

Dynamic Systems Development Method is a

framework for building high quality business solutions. It is

a well-organized framework and deals with the projects

where there are tight time constraints. It uses incremental

prototyping and follows an iterative approach. The best

aspect of Dynamic Systems Development Method is that it

provides an environment where all interested parties

involved in a project can cooperate and collaborate for

successful completion of the project [15]. The Dynamic

Systems Development Method is a modified version of

Pareto Principal. In Pareto Principal 80% functionality of a

project is delivered in 20% of the time in order to deliver a

complete 100% of project [16]. The remaining 20% of the

functionality is deliberately left for later iterations. This

strategy deals best with continuously changing

requirements because we know that not 100% of the

requirements are best known to the developers at the start

of the projects and they kept on changing throughout the

project life cycle. The process of Dynamic Systems

Development Method consists of seven phases [17]. These

include pre-project, feasibility study, business study,

functional model iteration, design and build iteration,

implementation and post project phases. The main benefits

of DSDM includes quick and in time delivery of the project

with also an eye on reducing the cost of the project. It also

involves self-organizing and collaborated teams.

Extreme Programing (XP)

Extreme Programing is a scientific and disciplined

Agile software development approach consisting of rules,

ideas and practices used to build highest quality software

with shorter development cycles. XP consists of small

iterations with small releases and rapid feedbacks. The

duration of each one of iteration is about three weeks long.

And a project consists of 2-5 of such small iterations. It is a

combination of 12 basic rules and techniques and is best

implemented in small and medium sized companies. A

team of 3-10 developers are used in XP. According to

Beck, "the size of the team should be around 3-20

members” [18]. XP is a natural process and hence cannot

be enforced. It is more of a developer focused technique

with very little focus on management. Out of 12 rules, only

3 are related to management and other 9 are developers

focused. According to Beck, “These practices support each

other and the weakness of one is covered by the strength of

others” [19].

Scrum

Scrum is a project management framework in Agile

software development which deals with how to manage a

particular software project. It is an iterative and incremental

approach of developing software. The Scrum does not deal

with how to engineer a product. Scrum deals best with

continuously changing variables like requirements, time,

cost, resources and technology. The process of Scrum is

flexible enough to accommodate theses changing variables

[20]. The process of Scrum uses rapid prototyping

technique. . Each team in Scrum consists of 5-10 members.

The duration of each sprint is between 2-4 weeks

depending upon what team members thinks about

complexity of that particular iteration. Each sprint has all

phases of software development life cycle in it like

analysis, system design, coding and testing. Multiple teams

in Scrum worked at the same time to complete a project on

time. The Scrum is one of the most popular Agile

Methodology these days and is used by many organizations

in software industry [20].

MATERIALS AND METHODS

DXPRUM – A Proposed Hybrid Model

DXPRUM is the proposed hybrid model which is a

combination of three of the widely used Agile models

named Dynamic Systems Development Method (DSDM),

Extreme Programing (XP) and Scrum. DXPRUM combines

the strengths of all the three models by removing their

weaknesses. It combines the project management practices

of Scrum with business focused approach of DSDM and by

covering whole SDLC under the umbrella of engineering

practices of XP. This makes DXPRUM a more powerful

model for medium scale projects. The best features of

DXPRUM model includes management of software

projects in a fixed time constraint and to work well with

changing requirements. The defect rate of DXPRUM is also

low when it compares to three Agile models. This results in

high quality software product.

The DXPRUM have combined features of DSDM, XP

and Scrum. It has pre-project and post-project phases of

DSDM along with some SDLC features also. The system

backlog, sprint backlog and DXPRUM increment features

are those also present in Scrum. During whole SDLC the

different phases are covered under the engineering practices

of XP. These practices include coding standards, pair

programming, refactoring, collective ownership of code

and test driven development. Combination all these make

DXPRUM an interesting model for software development

organizations.

The DXPRUM model is shown in figure 2. It starts

with pre-project phase. In this phase a feasibility study of

the software to be built is conducted. This feasibility study

ensures whether the software product may be completed

within certain time constraints and budget. The pre-project

phase is conducted before the project is officially started.

44

M. Fahad et al / IJNES, 8 (1): 42-48, 2014

Figure 2. The DXPRUM Model

Then the first important phase of software development life

cycle begins. This is the functional prototype phase. This is

the phase where initial design of the product is constructed.

The input to this phase is the SRS document. Then the

system backlog is created. Here the requirements

classification is done according to their priorities. The

whole of the process is completed with the consultation of

the stakeholders. These involve DXPRUM expert, product

owner and DXPRUM production team. Then the product is

divided in to sprints. The high priority requirements should

be completed in first. Then the main phases of SDLC are

started. These include detailed design of the product,

development and testing phases. These phases are

conducted under the umbrella of XP practices. These

include coding standards, pair programing, refactoring,

collective ownership of code and test driven development.

After a sprint is completed, a sprint evaluation meeting is

conducted. The meeting ensures whether all the

requirements of that sprint are implemented or not. If there

are any remaining or new requirements explored in that

meeting these become part of the sprint evaluation

feedback (SEF) document which is the input to system

backlog for implementation in next sprint. If whole

requirements are implemented and the product owner is

satisfied from the sprint output then the sprint release is

considered as DXPRUM increment. The final stage of the

DXPRUM is the post-project phase. It is the one where

maintenance of the project is done in future. If any bug is

found by the customer in the product in future this will be

resolved in maintenance phase.

The complete process of DXPRUM intends to cover all

the aspects of SDLC that are necessary for the production

of software with premium quality, low cost and low

defects. Each sprint cycle in DXPRUM is of 7-10 days

long. A medium size project contains 4-8 of such sprints.

Thus the duration of the project varies from 1.5 to 3 months

long. The sprint organizing meeting in DXPRUM is of 2-4

hours of duration. The daily DXPRUM meeting is of 30-45

45

M. Fahad et al / IJNES, 8 (1): 42-48, 2014

minutes of duration. Once again the sprint evaluation

meeting is of 2-4 hours of duration. The different roles of

DXPRUM model are DXPRUM expert, product owner and

DXPRUM production team. The DXPRUM roles, events,

artifacts and phases are explained in detail in next sections.

Roles of DXPRUM

The Different roles in DXPRUM include DXPRUM

Expert, Product Owner and DXPRUM Production Team.

The DXPRUM expert is the person who is responsible for

overall progress of the development process in DXPRUM

model. The DXPRUM expert acts like a manager and is

responsible for the successful completion of the error free

software in time and within proposed budget. The product

owner is also a stakeholder in DXPRUM model and has the

responsibility of deciding what work to be done? The

product owner is the person who writes and prioritizes

software requirements in the form of user stories. These

user stories then become part of system backlog. A group

of cross-functional and technically skilled professional

people who are responsible for the delivery of error free

software according to a set of given functional

requirements are called production team. In DXPRUM

model the DXPRUM production team consists of 4-7 full-

time members.

DXRUM Events

The different events of DXPRUM include Sprint

Organizing Meeting, daily DXPRUM Meeting and Sprint

Evaluation Meeting. The sprint organizing meeting is

conducted at the start of each sprint in DXPRUM to plan

about the sprint which is going to be started. The different

participants of sprint organizing meeting is DXPRUM

expert, product owner and DXPRUM production team. The

daily DXPRUM meetings are conducted on daily basis to

measure the progress of the production team. The

participants of these meetings include DXPRUM expert

and DXPRUM production team. The sprint evaluation

meeting is conducted at the end of each sprint to measure

the progress of all activities of previous sprint. The

participants of sprint evaluation meeting include DXPRUM

expert, DXPRUM production team, product owner,

customer and any other business partner for that project.

DXPRUM Artifacts

The different DXPRUM artifacts include System

Backlog, Sprint Backlog, DXPRUM increment, and Sprint

Evaluation Feedback (SEF). The system backlog in

DXPRUM model contains all the prioritized functional and

non-functional requirements of the system to be

implemented. The DXPRUM expert gathers these

requirements from product owner in the form of user
stories on user story cards. The system backlog and user

story card is shown in table 1 and figure 3 respectively. The

system backlog is further divided into sprint backlogs for

implementations. Each sprint in DXPRUM has its sprint

backlog. The sprint backlog is shown in table 2. The output

of each sprint is a working set of the product and is known

as DXPRUM increment. The sprint evaluation feedback

(SEF) is a document created during sprint evaluation

meeting and contains remaining or incomplete

requirements. These requirements in the SEF document

acts as input to system backlog to be implemented in next

sprint cycle.

Figure 3. User Story Card

Table 1. System Backlog

User

Story ID
User Story Priority Sprint Status Story

Estimated

Work

Actual

Work

1
As admin I want full control over all

modules

Strongly

Recommended
1 Closed New 10 9

2
I want every customer to register himself

first

Strongly

Recommended
1 Closed New 13 11

3 I want product search module in my site Recommended 2 Open Feed-back 8 0

4
I want my customer to recommend product

to their friends

Not

Recommended
4 Open New 12 0

5
I want customers to access my Facebook
page

Less
Recommended

3 Open New 10 0

6 I want advanced search feature
Medium
Recommended

3 Open New 6 0

7 I want to customize my view
Less
Recommended

4 Open New 4 0

8
I want control to sign-out any customer at
any time

Strongly
Recommended

1 Active New 10 0

9
Any registered customer should be
authenticated first by admin

Recommended 2 Open New 7 0

10
As admin I can view all sales and purchase

reports

Strongly

Recommended
1 Open New 14 0

46

M. Fahad et al / IJNES, 8 (1): 42-48, 2014

Table 2. Sprint Backlog

User

Story

ID

User Story Tasks Day 1 Day 2 Day 3 Day 4 Day 5 …..

1
As admin I want
 full control

over all modules

Design the …… 3 2 1 1

Code the ….. 2 2 1 2

Meet with Development Team 1 1 2 1

Design the user interface ….. 0 3 0 2

Test the ….. 1 1 1 1

2

I want every

 customer to
register himself

first

Design the …… 4 3 2 2

Code the ….. 3 2 2 3

Meet with Development Team 1 2 0 0

Design the user interface ….. 0 2 1 1

Test the ….. 1 1 1 1

Phases of DXPRUM

The phases of DXPRUM are the backbone of this

hybrid model. These must be conducted smoothly in order

to get a high quality defect free product. These phases

include Feasibility Study, Functional Prototype, Detailed

Design, Development, Testing and Maintenance. During

feasibility study a feasibility report of the project is

generated which includes answer to different important

questions about the project. The resources, completion

time, risks and cost involved and usefulness of the project

is discussed in detail in feasibility report. The functional

prototype in DXPRUM model is the initial design of the

project. This initial design is made on paper and is then

reviewed. It also provides best ways of solving the

problems that occur during development. The detailed

design phase in DXPRUM model occurs once the sprints

are decided in sprint organizing meeting. The detailed

design phase gives a detailed design of the modules that are

implemented in that particular sprint. These modules are

designed and developed in iterations. During development

the designed modules are coded for implementation. The

DXPRUM production team takes part in development

process. The DXPRUM expert is also there to help

production team in case they need any help. Whole of the

development process is conducted under the umbrella of

XP practices. These practices include pair programming,

coding standards, refactoring, collective ownership of code

and 40 hours per week work. Testing is an important

activity in DXPRUM model. During this stage the software

increment is tested against all functional and non-functional

requirements. Different types of testing include unit testing,

integration testing and system testing. The maintenance is

the last phase in DXPRUM model. It is a post-project

phase. The maintenance phase is started once the software

is handed over to the customers. During use if customers

found any bug in the software, he/she report it to

production team for maintenance. The production team

removes that bug by issuing some update or releasing some

patch. The maintenance is done using same sprint cycle as

done earlier to build the software.

RESULTS AND DISCUSSIONS

A controlled case study was conducted to validate

proposed model of DXPRUM. The results of the case study

were recorded from very first day. We have also

maintained a table showing total meetings that were held

during implementation of DXPRUM model on PC Arena

Online Shopping cart project. Four DXPRUM increments

were produced during this case study. First two increments

were of 2 weeks of duration while last 2 increments were of

1 week of duration each. We have recorded data from all

four sprints. The numerical data collected from the project

is shown in table 3. We can see from the table that data

from all four sprints are shown individually in the form of

columns. The last column shows the total of all four sprints.

The gathered data is explained here in detail.

The first row shows that first two sprints are completed

in 2 weeks each while last two sprints took 1 week each for

completion. This makes a total of 6 sprints to complete this

project. The next row shows the total number of modules

implemented during each sprint cycle. 15 modules are

implemented in first sprint and 6 are implemented in last

sprint. A total of 39 modules are implemented during this

project. We can see from 3rd row that a total of 46 user

stories are implemented in this project in all four sprints.

These user stories are actual user requirements. The 4th row

shows a total of the estimated work hours required to

complete this project. We can see that a total of 1152 hours

are estimated for completion of this project. The estimated

work hours are calculated by using this formula.

EWE = Duration of a sprint in weeks * Total working

days in a week * Total working hours in a day * Size of

production team

For example for sprint 1 the EWE can be calculated

EWE = 2 * 6 * 8 * 4 = 384

47

M. Fahad et al / IJNES, 8 (1): 42-48, 2014

Table 3. Results of DXPRUM Case Study

Sr No. Parameter Sprint 1 Sprint 2 Sprint 3 Sprint 4 Total

1 Sprint Duration (in Weeks) 2 2 1 1 6

2 No of Sprint Modules 15 11 7 6 39

3 No of User Stories 18 14 8 6 46

4
Estimated Work Effort (EWE)

(in Hours)
384 384 192 192 1152

5 Actual Work Effort (AWE) (in Hours) 322 304 156 148 930

6 No of Implemented Classes 65 44 34 22 165

7 Total Lines of Code (LOC) 21034 14026 10236 9422 54718

8 Kilo Lines of Code (KLOC) 21.03 14.03 10.24 9.42 54.72

9 Tested Lines of Code 9125 5035 4023 9853 28036

10 Pre-Release Defects 10 8 6 4 28

11 Post-Release Defects 6 3 2 2 13

12 Performance / Quality (Post-Release Defects / KLOC) 0.29 0.21 0.20 0.21 0.23 (Avg)

13 No of Sprint Evaluation Feedback Suggestions 6 5 3 3 17

14 No of Unit Tests 256 212 195 162 825

15 Customer Satisfaction (in Average) (Shodan Survey) 95% 85% 95% 93% 92% (Avg)

16 Team Productivity (LOC per hour) 65.32 46.14 65.62 63.66
60.19

(Avg)

17
Time to implement a user story
(AWE / No of user stories) (in hours)

17.89 21.71 19.50 24.67
20.94
(Avg)

The row 5 shows the actual work effort in hours that is

recorded to complete a sprint. We can see that first sprint

took 322 hours for completion. While total of four sprints

are 930 hours. The row 6 shows the total no of classes that

are implemented in each sprint. A total of 165 classes are

implemented in this project. The row 7 shows the total lines

of code for the project. The production team coded a total

of 54718 lines in this project. The row 8 shows total kilo

lines of code that are 54.72. This can be calculated using

the following formula.

KLOC = LOC / 1000

The row 9 shows the tested lines of code. These are

lines of code included in test cases. A total of 28036 lines

are included in test cases out of 54718 lines. The row 10

shows the pre-release defects of each sprint. The pre-

release defects are pointed out by production team during

development stage and they can be fixed using iterative

approach. Last column shows the total of pre-release

defects which are 28. The row 11 shows a total of post-

release defects which are 13. These are the defects which

are pointed out by product owner or customer during sprint

evaluation meeting. These defects are then recoded in sprint

evaluation feedback (SEF) document which becomes part

of product backlog and are implemented during next sprint.

The next row 12 shows the performance or quality of the

project. The less the number is the performance or quality

of the project is high. We can see from the table that

DXPRUM has a value of 0.23.This shows that the product

is of high quality.

Performance / Quality = Post-release Defects / KLOC

We can see from row 13 that sprint 1 contain 6, sprint 2

contain 5, sprint 3 contain 3 and sprint 4 also contain

3sprint evaluation feedback suggestions. This makes a total

of 17 sprint evaluation feedback (SEF) suggestions

occurred during this project. These include post-release

defects as well as any suggestions or new requirements that

are indicated by customer. The row 14 shws the total

number of unit test that are conducted during testing phase.

A total of 825 unit tests are conducted during this project.

The row 15 shows the percentage of customer satisfaction

level during each sprint. Also last column shows the

average of all sprints. During this project an average of

92% customer satisfaction is achieved. This is obtained by

conducting surveys during project implementation. The row

16 shows the team productivity. This is explained as the

number of lines coded by development team in an hour.

The average of the project is shown in last column which is

60.19 lines per hour.

TP = LOC / Actual work effort (in hours)

The last row shows time to implement a user story in

each of the four sprints. The last column shows the average

of all four sprints. The time to implement a user story in

any sprint can be calculated by using the formula below.

Time to implement a user story = Actual work effort /

No of user stories.

48

M. Fahad et al / IJNES, 8 (1): 42-48, 2014

CONCLUSION

The motivation for the proposed DXPRUM model is to

combine the best features of DSDM, XP and Scrum and

removing their weakness. DSDM provides a complete

software development life cycle but it only works best

when used for business projects. It is not suited for all types

of projects. This weakness is overcome by Scrum and XP.

XP focuses on team work. It is a combination of

engineering practices but lacks proper SDLC as well as

proper documentation. There is also lack of planning in XP.

It also has poor performance for medium and large scale

projects. Both Scrum and DSDM overcome these

weaknesses of XP. Scrum is a project management

framework. It does not provide proper planning for a

project. It also lacks proper SDLC as well as engineering

practices. DSDM and XP both merged in order to

overcome the weaknesses of Scrum.

In this paper we have developed a new hybrid Agile

model named as DXPRUM which provides a complete

software development life cycle for software developing

organizations. We have also validated it with the help of a

case study. We have discussed many factors in this case

study that affect the quality of a medium size projects.

The case study results clearly showed that DXPRUM is

more compact, elegant and powerful model than other

Agile methodologies. We have showed by results that the

main strengths of DXPRUM model are the in time delivery

of the project to customers with reduced cost. The model

also worked well with continuously changing requirements.

This model also overcomes the weaknesses such as to

reduce resource utilization without affecting the output and

to remove the overlapped resources.

Future Work

In this paper, we have presented DXPRUM model for

use in medium scale projects. In future this model can

further be modified for use in large scale projects by

implementing some other features of DSDM, XP and

Scrum. For example Scrum of Scrums feature of Scrum

model may be used here for large scale projects. Similarly

some XP practices along with some phases of DSDM may

also be used. The requirement classification phase of

DXPRUM model can be automated in future by using

artificial intelligence techniques. An intelligent neural

network based system can be build that can take important

decisions like allotment of priority tags during

requirements classification. The author considers it as a

future work.

REFERENCES

[1] Pahl G, Beitz W, Feldhusen J, Grote K. 2007.

Engineering Design: A Systematic Approach. 3rd Ed. The

Springer London. (London, UK). ISBN: 978-1-84628-318-

5.

[2] Boehm BW. 1988. A Spiral Model of Software

Development and Enhancement. Int. Journal of IEEE,

Computer. (CA, USA). 21(5): 61-72. ISSN: 0018-9162.

[3] Greenfield J, Short K. 2003. Software Factories:

Assembling Applications with Patterns, Models,

Frameworks and Tools. In Proc. of Int. Conference of

Companion of the 18th Annual ACL SIGPLAN on Object-

oriented Programming, Systems, Languages, and

Applications. (NY, USA). pp: 16-27. ISBN: 1-58113-751-

6.

[4] Cockburn A. 2004. Crystal Clear: A Human-

Powered Methodology for Small Teams. 1st Ed. Addison-

Wesley Professional. (Boston, USA). ISBN: 0201699478.

[5] Abrahamsson P, Warsta J, Siponen MT,

Ronkainen J. 2003. New Directions on Agile Methods: A

Comparative Analysis. In Proc. of 25th Int. Conference on

Software Engineering. (Portland, Oregon, USA). pp: 244-

254. ISSN: 0270-5257.

[6] Cohn M, Ford D. 2003. Introducing an Agile

Process to an Organization. Int. Journal of IEEE Computer.

(CA, USA). 36(6): 74-78. ISSN: 0018-9162.

[7] Awad MA. 2005. A Comparison between Agile

and Traditional Software Development Methodologies. M.

S. thesis, School of Computer Science and Software

Engineering, The University of Western Australia.

(Australia).

[8] Ambler SW. 2002. Agile Modeling: Effective

Practices for Extreme Programing and the Unified Process.

1st Ed. John Wiley & Sons Inc. (New York, USA). ISBN:

0471202827.

[9] Naik K, Tripathy P. 2008. Software Testing and

Quality Assurance, Theory and Practice. John Wiley &

Sons, Inc. (Hoboken, New Jersey, USA). pp. 523-527.

ISBN: 978-0-471-78911-6.

[10] Boehm BW. 2002. Get Ready for Agile Methods,

with Care. Int. Journal of IEEE, Computer. (CA, USA).

35(1): 64-69. ISSN: 0018-9162.

[11] Mushtaq Z, Qureshi MRJ. 2012. Novel Hybrid

Model: Integrating Scrum and XP. Int. Journal of

Information Technology and Computer Science

(IJITCS’12). 4(6): 39-44. ISSN: 2074-9015.

[12] Livermore J, 2008. Factors that Significantly

Impact the Implementation of an Agile Software

Development Methodology. Int. Journal of Software.

(Oulu, Finland). 3(4): 31-36.

[13] Pressman RS. 2010. Software Engineering: A

Practitioner’s Approach. 7th Ed. The McGraw-Hill

Companies, Inc. (New York, USA). pp. 65-94. ISBN: 978-

0-07-337597-7.

[14] Lina Z, Dan S. 2012. Research on Combining

Scrum with CMMI in Small and Medium Organizations. In

Proc. of IEEE Int. Conf. on Computer Science and

Electronics Engineering (ICCSEE’12). (Hangzhou, China).

1: 554-557.

[15] Stapleton J. 1999. DSDM: Dynamic Systems

Development Method. In Proc. of Int. Conf. of Technology

of Object-Oriented Languages and Systems. (Nancy,

France). pp: 406. ISBN: 978-0-7695-0275-5.

[16] Stapleton J. 2003. DSDM: Business Focused

Development. 2nd Ed. Addison Wesley Professional. The

DSDM Consortium. (London, UK). pp. 145-163. ISBN: 0-

321-11224-5.

[17] Voigt BJJ. 2004. Dynamic Systems development

Method. M. S. Thesis, Department of Information

Technology, University of Zurich. (Zurich, Switzerland).

[18] Beck K. 1999. Embracing Change with Extreme

Programing. Int. Journal of IEEE Computer. (California,

USA). 32 (10): 70-77. ISSN: 0018-9162.

[19] Beck K. 2000. Extreme Programing Explained:

Embrace Change. 1st Ed. Addison- Wesley Professional.

(Boston, USA). ISBN: 9780201616415.

[20] Schwaber K, Beedle M. 2002. Agile Software

Development with Scrum: Advanced Development

Methods. 1st Ed. Prentice Hall, Upper Saddle River. (New

Jersey, USA). pp: 145-171. ISBN: 0130676349.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6187453
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6187453
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6187453

