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Abstract 
The main objective of this study is to predict the performance of a commercial spark ignition (SI) engine using multigene genetic 

programming (GP). To acquire data for training and testing of the proposed GP, a four-cylinder, four-stroke test engine was fueled with ethanol-

gasoline fuel blends. The fuels were blended with various percentages of ethanol (0, 5, 10, 15 and 20%), and the engine was operated at different 
engine speeds and loads. The experimental results showed that using ethanol–gasoline blend fuels increased the brake power and torque of the 

engine. Numerous runs were performed with model of GP and the performance of developed equations was evaluated. The optimum models were 
selected according to statistical criteria of root mean square error (RMSE) and coefficient of determination (R2). The values of RMSE and R2 for 

brake power were found to be 0.388 and 0.998. It was observed that the GP model can predict engine torque with correlation coefficient (R2) in 

the range of 0.99–1 and RMSE was found to be 0.731. The simulation results demonstrated that GP model is a good tool to predict the engine 
brake power and torque under test.  

Keywords: SI engine: ethanol-gasoline blends: multigene genetic programming. 

 

Abbreviations 

EC Evolutionary computation GP Genetic programming 

GA Genetic Algorithm RMSE Root mean square error 

t Experimental value o Predicted value 

n Total number of data R2 Coefficient of determination 

VE Variation explained Pb Engine brake power 

T Engine torque x1 Engine speed 

x2 Engine load x3 Percentage of ethanol 

 

INTRODUCTION 

 
Evolutionary computation (EC) is drawing attentions for 

solving real engineering problems. This approach is to be 

robust in delivering global optimal solutions and coping with 

the restrictions encountered in traditional methods. EC 

harnesses the power of natural selection to turn computers 

into optimization tools [1-4]. This is very applicable to 

different problems in the manufacturing industry [5-8]. One 

of most important EC methods is genetic programming (GP). 

GP is a similar technique as genetic algorithm, an 

evolutionary computation method for imitating biological 

evolution of living organisms. 

Genetic Algorithms (GAs) and genetic programming 

(GP) have been found to offer advantages dealing with 

system modeling and optimization, especially for complex 

and nonlinear systems. GP has been applied to a wide range 

of problems in artificial intelligence, engineering and science, 

chemical and biological processes and mechanical issues [9-

13]. 

Pires, Alvim-Ferraz, Pereira and Martins [14] used GP 

method to predict the next day hourly average tropospheric 

ozone (O3) concentrations. The results showed very good 

agreement between predicted and measured data. Prediction 

of compressive and tensile strength of limestone was carried 

out via genetic programming as reported by Baykasoglu, 

Gullu, Canak and Ozbakir [15].  

Another interesting Genetic Programming application was 

conducted by Cevik and Cabalar [16] for prediction of peak 

ground acceleration (PGA) using strong-ground-motion data. 

In this research, they demonstrated a high correlation between 

PGA and predictions. Multigene genetic programming is a 

recently developed approach for improving accuracy of GP 

that was developed by Hinchliffe, Willis, Hiden, Tham, 

McKay and Barton [17] and Hiden [18] and have been 

utilized in some recent research works [19-20]. 

The aim of this paper is to use a multigene GP algorithm 

based mathematical model for predicting an SI engine brake 

power and torque in relation to input variables including 

engine speed, engine load and ethanol-gasoline fuel blends.  
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MATERIALS AND METHODS 

 
Data collection procedure 

A KIA 1.3 SOHC, four-cylinders, four-stroke, spark 

ignition (SI) engine was used in this study. Technical 

specifications of the test engine are shown in Table 1. To 

measure engine brake power and torque, a 190 kW 

SCHENCK-WT190 eddy-current dynamometer was used to 

perform the experiments. Five separate fuel tanks were 

arranged containing gasoline and the ethanol-gasoline blends. 

The test setup for performing experiments is demonstrated in 

Fig. 1. The brake power and torque of the test engine were 

measured with different blends of ethanol-gasoline (E0, E5, 

E10, E15 and E20). Each test of fuel blends was performed 

under varying engine speed (1000-5000 rpm with 500 rpm 

interval) and load conditions (25, 50, 70 and 100%). 

Properties of gasoline and ethanol used in this study have 

been presented in Table 2. 

 

Table 1. Technical specifications of the test engine. 

 

Engine type SOHC, fuel injected 

Number of cylinder 4 

Compression ratio 9.7 

Bore (mm) 71 

Stroke (mm) 83.6 

Displacement volume (cc) 1323 

Max. power (kW) 64 at 5200 rpm 

Cooling system Water-cooled 

 

 

Table 2. Properties of ethanol and gasoline. 

 

Genetic programming concept 

Genetic programming (GP) is a sub-branch of 

evolutionary algorithms (EAs) emulating the natural 

evolution of species. Koza [21] was one of the scientists who 

first suggested the use of GP to find a symbolic regression 

tree matching to the mathematical formula which can best fit 

the data according to a fitness criterion. Fitting such a model 

was performed in an optimization frame work in which the 

error (e.g., rmse) of the created symbolic trees versus sample 

data is minimized via regression. Thus; it is intrinsically 

suitable for modeling of complex industrial problems. In 

order to emulate the evolutionary process in the design of GP, 

certain components should be defined. These include n-ary 

arithmetic functions, problem decision variables and 

evolutionary operators such as reproduction, crossover, and 

mutation to symbolic expressions. The symbolic expressions, 

called individuals or solutions, are generated to create the 

initial population. A population in evolutionary algorithms is 

a set of a defined number of solutions at an iteration of the 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1. Schematic diagram of experimental setup. (1. Engine; 2.Dynamometer; 3.Drive shaft; 4.Dynamometer control unit, load & speed indicator; 

5.Exhaust; 6.Gas analyzer; 7. Air flow meter; 8.Fuel measurement system; 9.Measuring boom; 10.Computer) 

 

Fuel property Ethanol Gasoline 

Formula C2H5OH C4 to C12 

Molecular weight 46.07 100-105 

Density, g/cm3 at 20 ºC 0.79 0.74 

Lower heating value, MJ/kg 25.12 45.26 

Stoichiometric air- fuel ratio, Wight 9 14.7 

Specific heat, kJ/kg K 2.38 1.99 

Latent heat of vaporize, kJ/kg 839 305 
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algorithm. The initial expressions are produced with tree-

based encoding.  These expressions are constituted of 

elements from two distinctive parameter groups: (i) a 

functional set and (ii) a terminal set. The functional set is 

generally arithmetic function, e.g. f= {*, +, -, sin, cos, log, 

power …}. The arguments for these functions are supplied 

from the terminal set that includes the decision variables and 

constants. The initial solutions are restricted in terms of tree 

depth or length of expression to fill the first population in the 

algorithm with the potential building blocks of individuals to 

be created at the next step of the algorithm [21. 

At each generation a new population is created through 

selecting individuals based on their fitness and using the 

genetic operators (reproduction, crossover, and mutation). In 

reproduction operation, part of population (the fittest 

individuals) is preserved so that new generation is the result 

of genetic operations on the individuals of the actual 

population. In crossover operation two individuals (parents) 

are selected, their tree structures are broken at a randomly 

selected crossover point, and the produced sub-trees are 

recombined to form two new individuals (offspring) [22]. The 

existing population will then be substituted with the new 

population. The procedure is iterated until a termination 

criterion (achievement of the maximum number of 

generations or a determined error defined) is satisfied. 

A newly developed method for improving the precision of 

GP is ‘‘multigene genetic programming’’. The main 

difference between the traditional and the multigene GP is the 

number of trees which can be used. In the traditional GP, a 

single tree represents the model however, in the multigene GP 

several trees may express the model. All of these genes 

possess specific optimal weights and sum of weighted genes 

plus a bias term would form the final formula as the best 

resulted numerical model. Multigene GP can be shown as the 

follow: 

 

nn geneageneageneaaY  ...2211̀0

                    (1) 

 In which, a0 is the bias term and ai is weight of the ith 

gene. Indeed, multigene GP is a linear combination of 

nonlinear terms, and this feature allows identifying the model 

of engineering problems in a highly precise manner. 

 

Design of multigene GP 

The GP was used in this study to perform a multigene 

genetic programming for precise prediction of engine brake 

power and torque. The Genetic Programming & Symbolic 

Regression is a new code written on the basis of multigene 

GP for use with MATLAB [23]. 

The GP has the possibility of setting some limitations to 

avoid bloating. Bloating is defined as the unnecessary growth 

of the model without any significant improvement in the 

fitness. In order to avoid bloating, some restrictions were 

imposed on initial parameters such as maximum number of 

genes, maximum depth of genes and trees, and maximum 

number of nodes per tree. In addition, lexicographic 

tournament selection that is an efficient method for 

restraining the model bloating was used in GP. It is 

noteworthy that the present investigation has considered root 

mean square error (RMSE) as the fitness function of the 

analysis. The RMSE is defined as: 
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Where t is the experimental value, o is the predicted value 

and n is the total number of data. Table 3 indicates the range 

of the initial parameters used in the GP runs. Other initial 

parameters were adjusted to their default values in GPTIPS, 

according to Searson [24].  

 

Table 3. Multigene GP ranges of initially parameters. 

parameter Range 

Number of generations 100-300 

Population size 100-400 

Function set {+, -, ×,√ ÷, sin, cos, exp, 

log, tanh} 

Maximum number of genes  3-5 

Maximum depth of tree 4-8 

Probability of crossover 0.70-0.95 

Probability of mutation 0.04-0.2 

Probability of reproduction 0.01-0.1 

 

Three statistical evaluation criteria were applied to assess 

the model performance. (i) The coefficient of determination 

(R2  (  defined as: 
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 (ii) Variation explained (VE) defined as: 

 
2100RVE       

     (4) 

(iii) The root mean square error (RMSE) defined as Eq. (2). 

For developing the GP model, the data set was divided 

into two subsets including the training and testing with a ratio 

of 0.75 and 0.25, respectively (i.e., 135 samples for training 

and 48 samples for testing).  

 

RESULTS AND DISCUSSIONS 
 

Experiment results 

The effects of the ethanol addition to gasoline on the engine 

brake power and torque between 1000 and 5000 rpm engine 

speed at different loads (25, 50, 75% and full load) are shown 

in Fig. 2 and Fig.3 respectively. In general, increase of 

ethanol content increases the brake power and torque of the 

engine. Although the addition of ethanol to the gasoline 

decreases its heating value, the increase in torque and power 

was observed. Useful effect of ethanol as an oxygenated fuel 

is a possible reason for more complete combustion, and thus 

increasing the brake power and torque. Another possible 

reason is that the latent heat of evaporation of blended fuels is 
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Fig.2. Experimental results of brake power at different ethanol-

gasoline blends and engine speeds for: (a) full load, (b) 75% load, (c) 

50% load, (d) 25% load. 

 
 

 

 

 
 

Fig.3. Experimental results of torque at different ethanol-gasoline 

blends and engine speeds for: (a) full load, (b) 75% load, (c) 50% 
load, (d) 25% load. 
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higher than that of gasoline; this provides lower temperature 

intake manifold and increases volumetric efficiency (Table 2). 

So, the brake power and torque increase with increasing 

percentage of ethanol in fuel blends. 

Several runs were carried out with different initial 

parameters of multigene GP and the performance of 

developing equations was assessed for each run. Finally the 

best models were selected according to the performance 

evaluation criteria (Sec. 2.3) for prediction of engine brake 

power and torque.  

 

Multigene GP model for brake power 

The following equation was selected as the best model for 

brake power. 

 

7268.0)sin(4773.0)6396.0tanh(2742.0

))cos(cos(3925.0)8742.0tanh(2031.0

))cos(cos(3925.0)cos(3925.04875.03351.0

121

32121

21221







xxx

xxxxx

xxxxxPb

                                                                                               (5)                                    

Where Pb is the engine brake power (kW), and x1, x2 and 

x3 are the engine speed (rpm), engine load (%) and 

percentage of ethanol in fuel blends respectively. 

Accuracy of the equation is studied by plotting the 

measured against predicted values for training and testing sets 

(Fig.4). The values of R2 and RMSE are equal to 0.9985 and 

0.3382, respectively, for training sets (fig.4a) and 0.9955 and 

0.6596, respectively, for testing sets (fig.4b). There is a good 

correlation between the predictions from multigene GP and 

the measured data. 

A comparison of the error during training and testing by 

using multigene GP and experimental results are illustrated in 

Fig.5. As can be observed, the training sets include the results 

of 135 samples and the testing sets include the results of 45 

samples. It was seen that the multigene GP model can predict 

engine brake power with a high variation explained (99.85% 

for training and 99.55% for testing) and low root mean square 

errors (RMSE). 

 

 
 

 
 

Fig.4. Measured versuse prdicted values of brake power for, (a) training set data and (b) testining data set. 

(a) 

(b) 
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Fig.5. Comparisons of experimental results and the GP model predictions of brake power for, (a) training set data and (b) testining data set. 
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Multigene GP model for torque 

The following equation was selected as the best model for 

prediction of engine torque. 

 

2 1 2 2 1

1 3 2

2.461 0.2231log( 11.64) 3.353log( cos( ) 5.808)

9.756log(cos( ) 10.25) 17.57

T x x x x x

x x x

      

    

                       

(6) 

Where T is the engine torque (N.m), and x1, x2 and x3 

are engine speed (rpm), engine load (%) and percentage of 

ethanol in blend fuels respectively. 

Precision of the developed equation is examined by 

plotting the measured against predicted values for training 

 

and testing sets (Fig.6). The values of R2 and RMSE are 

equal to 0.9994 and 0.5245, respectively, for training sets 

(fig.6a) and 0.9989 and 0.7313, respectively, for testing sets 

(fig.6b). There is a good correlation between the predictions 

from multigene GP and the measured data.  

The error between predicted values by using multigene 

GP and experimental results of training and testing data are 

illustrated in Fig.7. As can be observed, the training sets 

include the results of 45 samples and testing sets include of 

145 samples. It was seen that the multigene GP model can 

predict engine torque with variation explained 99.94% and 

99.89% for training and testing data.  

 

 

 

 
 

 

 
 

 

Fig. 6. Measured versuse prdicted values of torque for, (a) training set data and (b) testining data set. 

(b) 

(a) 



14 

 
M. K. Deh Kiani et al / IJNES, 7 (3): 07-15, 2013 

 

 
 

 

 

 

 
 

 

 

 

Fig. 7. Comparisons of experimental results and the GP model predictions of torque for, (a) training set data and (b) testining data set. 
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CONCLUSIONS 

 
This research showed that a newly developed GP model 

can be used for predicting the brake power and torque of SI 

engine. The statistical parameters of R2 and RMSE 

demonstrated that the proposed multigene GP-based 

formulations results have best accuracy and can predict the 

engine brake power and torque close to experimental results. 

It is generally depicted that multigene GP is a powerful tool 

that has the capability to predict the engine performance and 

can be applied in the other industrial applications such as 

industrial processes and energy consumption which are even 

more sophisticated. The future work is using GP approach to 

predict other engine performance parameters and engine 

emissions using alternative fuels.  
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