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Abstract 

Reliability and energy efficiency are usually two opposing factors that are both critical in embedded processors. In this paper we 

present a register file-partitioningalgorithm, which accounts for both the AVF and access rate. Using this algorithm we divide the 

register file into protected and unprotected regions. We show that this algorithm can reduce the AVF by 65% while simultaneously 

reducing the energy consumption by 13% on an ARM processor for selected test benches. 
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INTRODUCTION 

 
Embedded systems are extensively used in various areas of 

communication, networking and multimedia. In these systems, 

power efficiency and reliability has risen to be the most 

concerning issues. Due to their ever-decreasing size, transistors 

power density has increased to such levels that it prevents the 

design from working at their maximum clock frequency. They 

have also become highly susceptible to soft errors [10]. It has 

been observed that the majority of the errors manifested in 

architectural state of a processor in both combinational and 

sequential logic are caused by faults in register file [3]. 

Research has also shown that the register file is one of the most 

power hungry segments. For example, in Motorola M.CORE 

architecture, register file consumes 42% of the data-path power 

[14], and up to 25% of the total processor power [1]. Therefore, 

it’s essential for any fault-tolerant mechanism to have minimum 

power overhead. This need is further amplified by the fact that 

soft error rate increases exponentially with temperature [7].  

Three methods have been traditionally used to protect 

register files. Hardware based methods use ECC, parity or 

duplication among other methods to protect register file in 

whole or in part [6][3]. Compiler based techniques try to use 

various compiler based methods to reduce vulnerability 

duration. [Yan05]  proposes an instruction scheduling that tries 

to reduce the distance between loads and stores in a bid to lower 

the register file vulnerability. [7] Reduces the vulnerability of 

registers by temporarily writing live variables to protected 

memory. Hybrid methods try to combine the above methods. [7] 

Uses compiler to change register assignments at the program 

level separately for each function [7] . They eliminate the 

overhead of hardware decision and improve the quality of 

decisions using compile-time analysis. Their Methodology 

althoughselectively protects the register file and tries to 

minimize the power overhead, still fails to completely eliminate 

it. Register file partitioning has been extensively recommended 

as a method to decrease power consumption [12] [2] [4]. [12] 

Used profiling and statistical application analysis to achieve 

40% energy saving on dual-bank configuration and a further 

15% -20% on multi-bank register files. These approaches 

address the high power consumption of register files but do not 

consider reliability as an issue. 

 Our work was motivated by the increasing need in today’s 

technology for energy efficient and reliable register files. There 

is a definite gap for techniques that can increase reliability by an 

acceptable margin without enforcing a high-energy overhead or 

even decreasing the total power consumption. Our technique 

uses register partitioning as a way to improve reliability and 

power consumption. We introduce a register partitioning 

technique, which considers both reliability and power 

consumption as factors for register partitioning and can be 

tweaked to suit our particular needs or limitations. We show in 

our experiment on an ARM processor for MiBench test bench 

that our proposed technique decreases the vulnerability of 

register file by 64% -79% while simultaneously reducing the 

energy consumption by 11% -16%.  

The remainder of the paper is organized as follows. Section 

II introduces various other works that has been done on both 

reliability and power efficiency of register files and presents our 

motivation for conducting this research. In Section III and IV 

we formulate our technique and show how it works through a 

small-scale sample. Section V and VI outlines the experimental 

environment and provides the experimental results with 

analysis. We finally discuss future works and draw conclusion 

in section VII and VIII. 

 

Preliminaries 

A. Power Consumption in a Protected Register File A 

typical two-port register file, shown in figure 1, has several 

components that dissipate power. Most important components 

are decoder, bit lines, word lines, sense amplifier, control 

circuitry and memory cells [8]. 

 We model the dynamic power consumption of the register 

file as Ptotal = Paccess×A, where A is the total access countand 

Paccess is the average power required for a single read or write 

operation.  
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Fig. 1. Basic structure of register file. 

 

 

 

For a partitioned register file with two partitions, however, 

accessing power for read or write operations can be derivedas: 

 

 Ptotal = (P1 ×A1 + P2 ×A2 + P12 ×A12)   (1) 

 

In this model, P1, P2 and P12 are power of accessing 

partition 1, partition 2 and cross accessing partitions and A1, A2 

and A12 are the total instruction count of each access. Values of 

P1 and P2 depend on register file structure and size. If partition 

2 is bigger than partition 1, because of large bit-line capacitance 

of partition 2 as compared to partition 1, we would have P1 < 

P2 < P12 and vise versa. Due to the bit line length, as shown in 

in Figure 2, the total energy of accessing register file is almost 

linearly dependent on the register file size. These results are 

extracted from circuit-level register file simulations using 

SPICE and are normalized against the un-partitioned 

configuration. 

 

 

Fig. 2. partitioned register file power usage 

 

B. Register File Reliability Measurement 

Architectural Vulnerability Factor is the factor we use 

forreliability measurement. It is the probability that a fault inthat 

particular structure will result in an error [11]. Thevulnerability 

of a register is defined as the sum of lifetimeof variables 

assigned to it. The lifetime of a variable is fromits definition 

until its last use and represents the time when valid data is 

present in the register. Transient fault to the register occurring 

during that time period therefore destroys data integrity and can 

manifest itself into an error. Thus given the same transient fault 

rate, vulnerability can be used to predict the soft error rate. The 

vulnerability of a register file is simply the sum of vulnerability 

of all registers. During our work, we consider the average AVF 

of the registers in the unprotected region as the AVF of the 

register banks. 

In order to estimate the reliability of the proposed 

registerfile architecture, the Architectural Vulnerability Factor is 

employed. The AVF of a part is the probability that a fault 

results in an error. To measure the AVF of a register we should 

first extract the fraction of time in which the register is 

vulnerable to faults so called ACE time (Architecturally Correct 

Execution)[11]. If a fault occurs in each bit of a register in its 

ACE time, it will produce an error. In contrast, the un-ACE time 

of a register is the fraction of time in which a faulty bit in the 

register will not result in an error. Finally, the AVF of a register 

is the percentage of time in which the register is in its ACE 

time. 

 Figure 3 and 4 represents a typical register ACE and Un- 

ACE time. As shown in figure 3, when a write operation is 

performed to the register, it enters its ACE time until the last 

read operation from the register. The time duration between the 

last read from the register and the next 

Fig. 3. ACE time of a register 

 

 

Fig. 4. Un-ACE Time of a register 
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write to theregister is considered as the Un-ACE time. If there is 

no read operation between two consecutive write operations 

(Figure 4), the register is always in its Un-ACE time. It means 

that a value is written to a register but never used. 

 

The Proposed Partitioning Technique 

Our goal is to divide the register file into two parts and to 

protect one of them against faults such that the critical registers 

are protected as much as possible against soft errors while 

somewhat maintaining the power reduction achieved through 

partitioning. We define critical registers as those, which have 

the highest AVF so our goal is to put the registers, which have 

the highest AVF in the protected region. This approach while 

giving us the highest reliability may not result in optimal power 

saving. To reach the optimal power saving our partitioning 

technique should put the registers with highest access rate in the 

smaller partition and also minimize the cross access between the 

two partitions. To achieve both of these goals, our partitioning 

technique uses a cost function. Our cost uses αas a variable 

which can be tweaked to provide more AVF protection or more 

power saving. Our cost function 

 

αAV F(R) + (1 α)(Power(R) + CrossPower(R))  (2) 

 

provides us with the necessary tool to design an algorithm that 

reaches a convincingly accurate greedy answer to the NP-

Complete partitioning problem. The Power(R) +CrossPower(R) 

is the original cost function that is usedfor register partitioning 

with only the energy consumption inmind. It uses two standard 

factors for comparing file register’spower consumption. 

Power(R) is the power used by registerR in various read and 

write accesses and CrossPower(R),which can be calculated for 

each of the protected and unprotectedparts, compensates for the 

extra power used when registerR is simultaneously used with 

another register from thatregister partition. By adding the AV 

F(R) into the formula,we account the AVF of register as a factor 

for calculating thecost and thus as a factor for selecting which 

registers to put inthe protected section. In our experiment on 

ARMv9 processorusing MiBench test bench, we have used 

various values for to observe the balance of these two factors. 

We offer two algorithms for partitioning the register bank: 

 

A. Static Greedy 

Algorithm 1 is a static greedy algorithm. It uses our 

costfunction to find the appropriate registers, which should 

beselected for the protected region. In this algorithm, we first 

put all the registers in the unprotected region. Our algorithmthen 

chooses the register with maximum AVF and puts itinto the 

protected region. After that it compares the crossusage power of 

the registers with the ones already present inthe protected 

region, AVF and power usage of each registerand selects a 

predefined number of registers that best suit outreliability and 

energy constraints. 

 

Algorithm 1: Static Greedy Algorithm 

1fori = 0 toSize(Register Bank) do 

2 AssignRitoUnprotected Region; 

3end 
4AssignRiWithMaximum AVF toProtected Region; 

5fori = 1 toSize(Protected Region) do 

6 

 

 

7 

FindRjinUnprotected Region With 

Max(αAV F(Rj) + (1 )(Power(Rj) + 

CrossPowerProtected(Rj))); 

AssignRjtoProtected Region; 

8 end 

B. Dynamic Greedy 

The dynamic greedy algorithm [Algorithm 2] is 

inspiredfrom the classic MinCut algorithm. Compared to the 

staticgreedy algorithm our dynamic greedy algorithm can 

alsocalculate appropriate partitioning size. Our algorithm 

beginsby assigning the Register with maximum AVF to the 

protectedsection and the one with minimum AVF to the 

unprotectedregion. Our algorithm then decides for all of the 

other registersin the register bank where to be located. At each 

step, wefind the register with the highest AVF and cross access 

withprotected region (The best register to be protected) and 

theregister with least AVF and most cross access with 

unprotectedpartition (The worse register to be protected). We 

compare theweight of these two registers and assign one of them 

to theprotected or unprotected section. The algorithm then finds 

theclosest partitioning size from the possible cuts and move 

extraregisters that may exist to the other part according the 

theirweight. Nevertheless this algorithm is more precise in 

drawingthe line between the protected and unprotected region, it 

worksmuch slower. 

There are two methods that can be used for assigning 

registersto the correct partition. A hardware approach needs 

morecomplex hardware that will cause in more energy usage. 

Thesoftware approach needs to be implemented on the 

compileror be done as post-compile processing. 

 

Algorithm2:Dynamic Greedy Algorithm 

1AssignRiWithMaximum AVF toProtected Region 

2AssignRiWithMinimum AVF toUnprotected 

  Region; 

3fori = 2 toSize(Register Bank) do 

4 FindRjWithWRj=Max(αAV F(Rj) + (1  

 (Power(Rj) + CrossPowerProtected(Rj))); 

5 

 

6 

7 

8 

9 

10 

FindRjWithWRj=Max(α(1 AV F(Rj))+(1  

 (Power(Rj) + CrossPowerUnprotected(Rj))); 

ifWR
i> WRjthen 

 AssignRitoProtected Region; 

else 

 AssignRjtoUnprotected Region 

end 

11end 
12 (P;Q) = Selectnearest partition from 

(2; 14), (4; 12), (8; 8); 

13Moveextra Registers Rito other partition in (P,Q); 

 

Example Of Algorithm 
In this section we present how our algorithm works ona 

small 5 register RF as proof of concept. We present 

therelationship between these registers in a complete graph 

shownin Figure 5. In this graph each node represents a register. 

Eachregister has a number and a percentile written in it, which 

arerespectively the number of unaccompanied accesses 

(accessesthat involve no other register beside them) and the 

AVF of the register. Each node is colored according to it’s 

assignment. ”Dark Green” and ”Red” represents assignment to 

Protected and Unprotected partition respectively. ”Light Green” 

and”Orange” arealsoused to display the register currently 

getting assigned tothe Protected or Unprotected region. Each 

edge in this graph represent the number of times both of these 

registersis accessed simultaneously. 

 

 A. Static Greedy 

In our static greedy algorithm we choose to divide our 

register file into 3-2 (Protected-Unprotected) partitions. Our 

algorithm first finds the register with maximum AVF (R1 with 
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%94) and moves it to the protected region. (Fig. 6.A) After this 

stage, our static greedy algorithm in each step will find the 

register that will maximize our cost function and moves that 

register to the protected region. (Fig. 6) The cost function of 

each unassigned node is calculated as 

 

AV F( ) + (1 )( + (Σ 2 Protected) 

 

Using this method our protected algorithm will choose R3 and 

R2 and moves them to the protected region before terminating. 

The finishing result of this algorithm can be seen in (Fig. 6.D) 

 
Fig. 5. Sample Relation Between Registers 

 

 
 

Fig. 6. Static Greedy Algorithm 

 

B. Dynamic Greedy 

In our static greedy algorithm We first move the register with 

maximum AVF to the protected region and the registerwith the 

minimum AVF to the unprotected region. (Fig. 7.A) We then 

calculate our cost function for all the against both the protected 

and unprotected region atevery turn and assign the register with 

maximum cost functionto the appropriate partition. (Fig. 6) It can 

be seen that unlikethe static greedy algorithm 

 
        Fig. 7. Dynamic Greedy Algorithm 

 

which divided the register bank into3-2 partitioning that was 

requested of it; our dynamic greedygoes onto a 1-4 partitioning 

(Fig. 6.E) before rounding it tothe closet acceptable partitioning 

(2-3) as the best partitioning. (Fig. 6.F) 

 

Experimental System 

Various protective hardware measures can be taken to 

eliminatethe AVF in a register. Each of these methods have 

poweroverhead, which could limit their efficiency and usability. 

Four methods have been extensively used for protection 

ofthe register files. The first method is parity, which poses 

limited energy,overhead but is limited as it provides no 

errorprotection mechanism [9]. ECC on the other hand can 

correcterrors but it doubles the energy consumption of the 

register file[9]. [Memik05] uses duplication to protect the 

register file andencounters an on average 15% of power 

overhead. The finalmethod that is used for protecting the 

register file is the useof hardened memory cells such as rSRAM 

[13]. In rSRAMtwo symmetrical stacked capacitors are used to 

increase the minimum amount of charge required to flip the 

logic state [13]. In our study we use this technology for registers 

used in our protected region and consider a 20% power 

overhead for them. In our proposed partitioning techniques, we 

first profile the workload programs to extract information about 

register file access and AVF. To obtain execution profile of 

applications, we use a Verilog HDL model of ARM v9 

processor. As a test bench for our method, we use some tests 

from the well-known MiBench benchmark, an embedded 

benchmark suite [5]. These benchmarks are listed on table I 

along with their description. All of them are cross-compiled for 

ARM processor with GNU-GCC compiler. 

We simulate this benchmarks on our processor model for 

one million instructions. The resulted profiles contain a timing 
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accurate register file access statistics along with register values. 

We analyzed these profiles to obtain statistical data from 

applications such as register access and cross access 

information; then we applied our algorithm to find the optimum 

register assignment. To compute power consumption of our 

register file, we developed a complete circuit-level netlist of 

register file. The netlist was simulated using Synopsys HSIM 

for 0:18_m TSMC CMOS process. Our register file structure, 

capacitance and transistor sizing are similar to the two-port 

register file IP-cores distributed by foundries/IP-core design 

houses at 0:18_m technology node. We used this information in 

our power estimation tool to estimate total power consumption 

of register file. Our power estimation tool can accurately 

estimate power consumption of different structures of 

partitioned register file. In this paper, our register file structure 

consists of two partitions with variable size (2; 4; 8 for smaller 

partition and 8; 12; 14 for bigger one).  

 

 
 

Fig. 8. An rSRAM cell 

 

 

Table I Mibench Benchmarks 

 

benchmark description 

 

qsort 

basicmath 

fft 

bitcnts 

stringsearch 

quick sort algorithm for sorting words 

basic mathematical operation 

fast Fourier transform 

counting bits 

searching in strings 

 

 

RESULTS 

 
We simulated five of the MiBench tests for one million 

instructions on LEONv9 processor. We tested our technique for 

various amounts of αand different partitioning approaches. As 

sampled in figures 10 and 9, it was universally observed that the 

8-8 partitioning achieves better power saving and reliability for 

every value αagainst the 4-12 and 2-14 partitioning approaches 

For this reason we primarily focus on the 8-8 partitioning in the 

upcoming observations.  

 

  

 

 

 

Table II Register Selection For Protected Region On Various 

Values Ofalpha 

α Selected Registers 
Power 
Reduction % 

AVF Reduction % 

0 0 1 2 3 4 11 12 14 18.82 45.58 

0.1 0 1 2 3 4 11 12 13 19.21 48.61 

0.2 0 1 2 3 4 8 11 12 18.27 51.73 

0.3 0 1 2 3 4 8 11 12 18.27 51.73 

0.4 0 1 4 6 8 9 11 12 13.98 63.47 

0.5 0 1 4 6 8 9 11 12 13.98 63.47 

0.6 0 1 4 6 8 9 11 12 13.98 63.47 

0.7 0 4 6 7 8 9 11 12 13.29 63.47 

0.8 0 4 6 7 8 9 11 12 13.29 63.47 

0.9 0 4 6 7 8 9 11 12 13.29 63.47 

1 0 4 5 6 7 8 9 11 12.43 64.95 

 

 
 

Fig. 9. Power Reduction for various partitioning  

 

        
 

Fig. 10. AVF Reduction for various partitioning 

 

Our results show that our technique can greatly decrease the 

AVF while simultaneously providing power saving. Figure 12 

showcases our AVF reduction and 11 shows the percentage of 

our energy saving on various test benches. It’s notable that
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variable αis working in our algorithm as expected. Increase in 

αresults in an overall reduction in power saving but increases 

the reliability of our system. Thus this algorithm can provide the 

user with diverse choices in terms of energy saving and 

reliability depending on the needs and priorities. Table II also 

shows which registers are chosen to be in our protected region 

depending on various values for αin string search test. It 

displays how changing the αvalue will noticeably change the 

registers that need our protection and how these changes effect 

the power and reliability of our model.  

 

  
 

Fig. 11. Power reduction results 

 

       
 

Fig. 12. AVF Reduction results 

 

        
Fig. 13. PRP for various αvalues 

 

These results while providing us with a versatile tool to 

achieve our requirements, bring forward the question: Which 

αvalue is better rounded and provides the best overall results on 

both power saving and reliability? For measuring this factor we 

present the Power-Reliability Product (PRP), which we define 

as: 

PRP = Power Reduction ×AV F Reduction  (3) 

 

Figure 13 shows the PRP of our technique for various test 

benches. It can be seen that the PRP value for α= 0 and α= 1 is 

roughly equal in most of the test benches showing that 

prioritizing either of the two factors achieve the same overall 

results. Our observation is that choosing the registers for 

partitioning solely on the basis of AVF proves to provide 

exceptional reliability increase while giving us an acceptable 

power reduction. It can be stated that sacrificing Reliability for 

power in our technique is generally not advised unless there are 

hard power limitations that can be achieved for a smaller value 

of α. 

 

FUTURE WORKS 

 
In future works we intend to apply our technique to 

multibank register file partitioning. Multi-bank register file 

partitioning has been shown to achieve 10% -15% more power 

reduction compared to the dual bank. Using more than two 

register banks also gives us the chance to implement different 

protection methods for different banks and will give us much 

more flexibility to optimize power usage against vulnerability.  

In fact, we can use different fault-tolerant techniques to protect 

the partitions taking into account their vulnerability. This means 

that for partitions having higher level of vulnerability, we can 

employ more powerful protection techniques. This provides an 

attractive trade-off between the reliability obtained and the 

amount of overhead imposed. 

 

CONCLUSION 

 
In this paper we presented a novel register file partitioning 

technique. Our technique differs from other method in its 

approach to partitioning as not only a power saving technique 

but also as a protection mechanism. With this approach, our 

partitioning divided the register file into protected and 

unprotected regions. We showed in our experiment on ARMv9 

processor using MiBench that our technique can gain an AVF 

reduction of 64 -79% while simultaneously achieving 11 -16% 

power saving. 
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