

A Power Efficient Register File Architecture in Embedded Processors

Leila REIKHTECHI1 Mahdi FAZELI2* Ahmad PATOOGHY2
1Islamic Azad University of Broujerd, Broujerd, IRAN
2Iran University of Science and Technology, Tehran, IRAN

*Corresponding author Received: July 07, 2013

E-mail: m_fazeli@iust.ac.ir Accepted: December 10, 2013

Abstract

Reliability and energy efficiency are usually two opposing factors that are both critical in embedded processors. In this paper we

present a register file-partitioningalgorithm, which accounts for both the AVF and access rate. Using this algorithm we divide the

register file into protected and unprotected regions. We show that this algorithm can reduce the AVF by 65% while simultaneously

reducing the energy consumption by 13% on an ARM processor for selected test benches.

Keywords: Embedded Systems, Fault Tolerant, Low Power Design, Register File

INTRODUCTION

Embedded systems are extensively used in various areas of

communication, networking and multimedia. In these systems,

power efficiency and reliability has risen to be the most

concerning issues. Due to their ever-decreasing size, transistors

power density has increased to such levels that it prevents the

design from working at their maximum clock frequency. They

have also become highly susceptible to soft errors [10]. It has

been observed that the majority of the errors manifested in

architectural state of a processor in both combinational and

sequential logic are caused by faults in register file [3].

Research has also shown that the register file is one of the most

power hungry segments. For example, in Motorola M.CORE

architecture, register file consumes 42% of the data-path power

[14], and up to 25% of the total processor power [1]. Therefore,

it’s essential for any fault-tolerant mechanism to have minimum

power overhead. This need is further amplified by the fact that

soft error rate increases exponentially with temperature [7].

Three methods have been traditionally used to protect

register files. Hardware based methods use ECC, parity or

duplication among other methods to protect register file in

whole or in part [6][3]. Compiler based techniques try to use

various compiler based methods to reduce vulnerability

duration. [Yan05] proposes an instruction scheduling that tries

to reduce the distance between loads and stores in a bid to lower

the register file vulnerability. [7] Reduces the vulnerability of

registers by temporarily writing live variables to protected

memory. Hybrid methods try to combine the above methods. [7]

Uses compiler to change register assignments at the program

level separately for each function [7] . They eliminate the

overhead of hardware decision and improve the quality of

decisions using compile-time analysis. Their Methodology

althoughselectively protects the register file and tries to

minimize the power overhead, still fails to completely eliminate

it. Register file partitioning has been extensively recommended

as a method to decrease power consumption [12] [2] [4]. [12]

Used profiling and statistical application analysis to achieve

40% energy saving on dual-bank configuration and a further

15% -20% on multi-bank register files. These approaches

address the high power consumption of register files but do not

consider reliability as an issue.

 Our work was motivated by the increasing need in today’s

technology for energy efficient and reliable register files. There

is a definite gap for techniques that can increase reliability by an

acceptable margin without enforcing a high-energy overhead or

even decreasing the total power consumption. Our technique

uses register partitioning as a way to improve reliability and

power consumption. We introduce a register partitioning

technique, which considers both reliability and power

consumption as factors for register partitioning and can be

tweaked to suit our particular needs or limitations. We show in

our experiment on an ARM processor for MiBench test bench

that our proposed technique decreases the vulnerability of

register file by 64% -79% while simultaneously reducing the

energy consumption by 11% -16%.

The remainder of the paper is organized as follows. Section

II introduces various other works that has been done on both

reliability and power efficiency of register files and presents our

motivation for conducting this research. In Section III and IV

we formulate our technique and show how it works through a

small-scale sample. Section V and VI outlines the experimental

environment and provides the experimental results with

analysis. We finally discuss future works and draw conclusion

in section VII and VIII.

Preliminaries

A. Power Consumption in a Protected Register File A

typical two-port register file, shown in figure 1, has several

components that dissipate power. Most important components

are decoder, bit lines, word lines, sense amplifier, control

circuitry and memory cells [8].

 We model the dynamic power consumption of the register

file as Ptotal = Paccess×A, where A is the total access countand

Paccess is the average power required for a single read or write

operation.

Internatıonal Journal of Natural and Engineering Sciences 7 (3): 36-42, 2013

ISSN: 1307-1149, E-ISSN: 2146-0086, www.nobel.gen.tr

 L. Reikhtechi et al / IJNES, 7 (3): 36-42, 2013 37

Fig. 1. Basic structure of register file.

For a partitioned register file with two partitions, however,

accessing power for read or write operations can be derivedas:

 Ptotal = (P1 ×A1 + P2 ×A2 + P12 ×A12) (1)

In this model, P1, P2 and P12 are power of accessing

partition 1, partition 2 and cross accessing partitions and A1, A2

and A12 are the total instruction count of each access. Values of

P1 and P2 depend on register file structure and size. If partition

2 is bigger than partition 1, because of large bit-line capacitance

of partition 2 as compared to partition 1, we would have P1 <

P2 < P12 and vise versa. Due to the bit line length, as shown in

in Figure 2, the total energy of accessing register file is almost

linearly dependent on the register file size. These results are

extracted from circuit-level register file simulations using

SPICE and are normalized against the un-partitioned

configuration.

Fig. 2. partitioned register file power usage

B. Register File Reliability Measurement

Architectural Vulnerability Factor is the factor we use

forreliability measurement. It is the probability that a fault inthat

particular structure will result in an error [11]. Thevulnerability

of a register is defined as the sum of lifetimeof variables

assigned to it. The lifetime of a variable is fromits definition

until its last use and represents the time when valid data is

present in the register. Transient fault to the register occurring

during that time period therefore destroys data integrity and can

manifest itself into an error. Thus given the same transient fault

rate, vulnerability can be used to predict the soft error rate. The

vulnerability of a register file is simply the sum of vulnerability

of all registers. During our work, we consider the average AVF

of the registers in the unprotected region as the AVF of the

register banks.

In order to estimate the reliability of the proposed

registerfile architecture, the Architectural Vulnerability Factor is

employed. The AVF of a part is the probability that a fault

results in an error. To measure the AVF of a register we should

first extract the fraction of time in which the register is

vulnerable to faults so called ACE time (Architecturally Correct

Execution)[11]. If a fault occurs in each bit of a register in its

ACE time, it will produce an error. In contrast, the un-ACE time

of a register is the fraction of time in which a faulty bit in the

register will not result in an error. Finally, the AVF of a register

is the percentage of time in which the register is in its ACE

time.

 Figure 3 and 4 represents a typical register ACE and Un-

ACE time. As shown in figure 3, when a write operation is

performed to the register, it enters its ACE time until the last

read operation from the register. The time duration between the

last read from the register and the next

Fig. 3. ACE time of a register

Fig. 4. Un-ACE Time of a register

 L. Reikhtechi et al / IJNES, 7 (3): 36-42, 2013 38

write to theregister is considered as the Un-ACE time. If there is

no read operation between two consecutive write operations

(Figure 4), the register is always in its Un-ACE time. It means

that a value is written to a register but never used.

The Proposed Partitioning Technique

Our goal is to divide the register file into two parts and to

protect one of them against faults such that the critical registers

are protected as much as possible against soft errors while

somewhat maintaining the power reduction achieved through

partitioning. We define critical registers as those, which have

the highest AVF so our goal is to put the registers, which have

the highest AVF in the protected region. This approach while

giving us the highest reliability may not result in optimal power

saving. To reach the optimal power saving our partitioning

technique should put the registers with highest access rate in the

smaller partition and also minimize the cross access between the

two partitions. To achieve both of these goals, our partitioning

technique uses a cost function. Our cost uses αas a variable

which can be tweaked to provide more AVF protection or more

power saving. Our cost function

αAV F(R) + (1 α)(Power(R) + CrossPower(R)) (2)

provides us with the necessary tool to design an algorithm that

reaches a convincingly accurate greedy answer to the NP-

Complete partitioning problem. The Power(R) +CrossPower(R)

is the original cost function that is usedfor register partitioning

with only the energy consumption inmind. It uses two standard

factors for comparing file register’spower consumption.

Power(R) is the power used by registerR in various read and

write accesses and CrossPower(R),which can be calculated for

each of the protected and unprotectedparts, compensates for the

extra power used when registerR is simultaneously used with

another register from thatregister partition. By adding the AV

F(R) into the formula,we account the AVF of register as a factor

for calculating thecost and thus as a factor for selecting which

registers to put inthe protected section. In our experiment on

ARMv9 processorusing MiBench test bench, we have used

various values for to observe the balance of these two factors.

We offer two algorithms for partitioning the register bank:

A. Static Greedy

Algorithm 1 is a static greedy algorithm. It uses our

costfunction to find the appropriate registers, which should

beselected for the protected region. In this algorithm, we first

put all the registers in the unprotected region. Our algorithmthen

chooses the register with maximum AVF and puts itinto the

protected region. After that it compares the crossusage power of

the registers with the ones already present inthe protected

region, AVF and power usage of each registerand selects a

predefined number of registers that best suit outreliability and

energy constraints.

Algorithm 1: Static Greedy Algorithm

1fori = 0 toSize(Register Bank) do

2 AssignRitoUnprotected Region;

3end
4AssignRiWithMaximum AVF toProtected Region;

5fori = 1 toSize(Protected Region) do

6

7

FindRjinUnprotected Region With

Max(αAV F(Rj) + (1)(Power(Rj) +

CrossPowerProtected(Rj)));

AssignRjtoProtected Region;

8 end

B. Dynamic Greedy

The dynamic greedy algorithm [Algorithm 2] is

inspiredfrom the classic MinCut algorithm. Compared to the

staticgreedy algorithm our dynamic greedy algorithm can

alsocalculate appropriate partitioning size. Our algorithm

beginsby assigning the Register with maximum AVF to the

protectedsection and the one with minimum AVF to the

unprotectedregion. Our algorithm then decides for all of the

other registersin the register bank where to be located. At each

step, wefind the register with the highest AVF and cross access

withprotected region (The best register to be protected) and

theregister with least AVF and most cross access with

unprotectedpartition (The worse register to be protected). We

compare theweight of these two registers and assign one of them

to theprotected or unprotected section. The algorithm then finds

theclosest partitioning size from the possible cuts and move

extraregisters that may exist to the other part according the

theirweight. Nevertheless this algorithm is more precise in

drawingthe line between the protected and unprotected region, it

worksmuch slower.

There are two methods that can be used for assigning

registersto the correct partition. A hardware approach needs

morecomplex hardware that will cause in more energy usage.

Thesoftware approach needs to be implemented on the

compileror be done as post-compile processing.

Algorithm2:Dynamic Greedy Algorithm

1AssignRiWithMaximum AVF toProtected Region

2AssignRiWithMinimum AVF toUnprotected

 Region;

3fori = 2 toSize(Register Bank) do

4 FindRjWithWRj=Max(αAV F(Rj) + (1

 (Power(Rj) + CrossPowerProtected(Rj)));

5

6

7

8

9

10

FindRjWithWRj=Max(α(1 AV F(Rj))+(1

 (Power(Rj) + CrossPowerUnprotected(Rj)));

ifWR
i> WRjthen

 AssignRitoProtected Region;

else

 AssignRjtoUnprotected Region

end

11end
12 (P;Q) = Selectnearest partition from

(2; 14), (4; 12), (8; 8);

13Moveextra Registers Rito other partition in (P,Q);

Example Of Algorithm
In this section we present how our algorithm works ona

small 5 register RF as proof of concept. We present

therelationship between these registers in a complete graph

shownin Figure 5. In this graph each node represents a register.

Eachregister has a number and a percentile written in it, which

arerespectively the number of unaccompanied accesses

(accessesthat involve no other register beside them) and the

AVF of the register. Each node is colored according to it’s

assignment. ”Dark Green” and ”Red” represents assignment to

Protected and Unprotected partition respectively. ”Light Green”

and”Orange” arealsoused to display the register currently

getting assigned tothe Protected or Unprotected region. Each

edge in this graph represent the number of times both of these

registersis accessed simultaneously.

 A. Static Greedy

In our static greedy algorithm we choose to divide our

register file into 3-2 (Protected-Unprotected) partitions. Our

algorithm first finds the register with maximum AVF (R1 with

 L. Reikhtechi et al / IJNES, 7 (3): 36-42, 2013 39

%94) and moves it to the protected region. (Fig. 6.A) After this

stage, our static greedy algorithm in each step will find the

register that will maximize our cost function and moves that

register to the protected region. (Fig. 6) The cost function of

each unassigned node is calculated as

AV F() + (1)(+ (Σ 2 Protected)

Using this method our protected algorithm will choose R3 and

R2 and moves them to the protected region before terminating.

The finishing result of this algorithm can be seen in (Fig. 6.D)

Fig. 5. Sample Relation Between Registers

Fig. 6. Static Greedy Algorithm

B. Dynamic Greedy

In our static greedy algorithm We first move the register with

maximum AVF to the protected region and the registerwith the

minimum AVF to the unprotected region. (Fig. 7.A) We then

calculate our cost function for all the against both the protected

and unprotected region atevery turn and assign the register with

maximum cost functionto the appropriate partition. (Fig. 6) It can

be seen that unlikethe static greedy algorithm

 Fig. 7. Dynamic Greedy Algorithm

which divided the register bank into3-2 partitioning that was

requested of it; our dynamic greedygoes onto a 1-4 partitioning

(Fig. 6.E) before rounding it tothe closet acceptable partitioning

(2-3) as the best partitioning. (Fig. 6.F)

Experimental System

Various protective hardware measures can be taken to

eliminatethe AVF in a register. Each of these methods have

poweroverhead, which could limit their efficiency and usability.

Four methods have been extensively used for protection

ofthe register files. The first method is parity, which poses

limited energy,overhead but is limited as it provides no

errorprotection mechanism [9]. ECC on the other hand can

correcterrors but it doubles the energy consumption of the

register file[9]. [Memik05] uses duplication to protect the

register file andencounters an on average 15% of power

overhead. The finalmethod that is used for protecting the

register file is the useof hardened memory cells such as rSRAM

[13]. In rSRAMtwo symmetrical stacked capacitors are used to

increase the minimum amount of charge required to flip the

logic state [13]. In our study we use this technology for registers

used in our protected region and consider a 20% power

overhead for them. In our proposed partitioning techniques, we

first profile the workload programs to extract information about

register file access and AVF. To obtain execution profile of

applications, we use a Verilog HDL model of ARM v9

processor. As a test bench for our method, we use some tests

from the well-known MiBench benchmark, an embedded

benchmark suite [5]. These benchmarks are listed on table I

along with their description. All of them are cross-compiled for

ARM processor with GNU-GCC compiler.

We simulate this benchmarks on our processor model for

one million instructions. The resulted profiles contain a timing

 L. Reikhtechi et al / IJNES, 7 (3): 36-42, 2013 40

accurate register file access statistics along with register values.

We analyzed these profiles to obtain statistical data from

applications such as register access and cross access

information; then we applied our algorithm to find the optimum

register assignment. To compute power consumption of our

register file, we developed a complete circuit-level netlist of

register file. The netlist was simulated using Synopsys HSIM

for 0:18_m TSMC CMOS process. Our register file structure,

capacitance and transistor sizing are similar to the two-port

register file IP-cores distributed by foundries/IP-core design

houses at 0:18_m technology node. We used this information in

our power estimation tool to estimate total power consumption

of register file. Our power estimation tool can accurately

estimate power consumption of different structures of

partitioned register file. In this paper, our register file structure

consists of two partitions with variable size (2; 4; 8 for smaller

partition and 8; 12; 14 for bigger one).

Fig. 8. An rSRAM cell

Table I Mibench Benchmarks

benchmark description

qsort

basicmath

fft

bitcnts

stringsearch

quick sort algorithm for sorting words

basic mathematical operation

fast Fourier transform

counting bits

searching in strings

RESULTS

We simulated five of the MiBench tests for one million

instructions on LEONv9 processor. We tested our technique for

various amounts of αand different partitioning approaches. As

sampled in figures 10 and 9, it was universally observed that the

8-8 partitioning achieves better power saving and reliability for

every value αagainst the 4-12 and 2-14 partitioning approaches

For this reason we primarily focus on the 8-8 partitioning in the

upcoming observations.

Table II Register Selection For Protected Region On Various

Values Ofalpha

α Selected Registers
Power
Reduction %

AVF Reduction %

0 0 1 2 3 4 11 12 14 18.82 45.58

0.1 0 1 2 3 4 11 12 13 19.21 48.61

0.2 0 1 2 3 4 8 11 12 18.27 51.73

0.3 0 1 2 3 4 8 11 12 18.27 51.73

0.4 0 1 4 6 8 9 11 12 13.98 63.47

0.5 0 1 4 6 8 9 11 12 13.98 63.47

0.6 0 1 4 6 8 9 11 12 13.98 63.47

0.7 0 4 6 7 8 9 11 12 13.29 63.47

0.8 0 4 6 7 8 9 11 12 13.29 63.47

0.9 0 4 6 7 8 9 11 12 13.29 63.47

1 0 4 5 6 7 8 9 11 12.43 64.95

Fig. 9. Power Reduction for various partitioning

Fig. 10. AVF Reduction for various partitioning

Our results show that our technique can greatly decrease the

AVF while simultaneously providing power saving. Figure 12

showcases our AVF reduction and 11 shows the percentage of

our energy saving on various test benches. It’s notable that

 L. Reikhtechi et al / IJNES, 7 (3): 36-42, 2013 41

variable αis working in our algorithm as expected. Increase in

αresults in an overall reduction in power saving but increases

the reliability of our system. Thus this algorithm can provide the

user with diverse choices in terms of energy saving and

reliability depending on the needs and priorities. Table II also

shows which registers are chosen to be in our protected region

depending on various values for αin string search test. It

displays how changing the αvalue will noticeably change the

registers that need our protection and how these changes effect

the power and reliability of our model.

Fig. 11. Power reduction results

Fig. 12. AVF Reduction results

Fig. 13. PRP for various αvalues

These results while providing us with a versatile tool to

achieve our requirements, bring forward the question: Which

αvalue is better rounded and provides the best overall results on

both power saving and reliability? For measuring this factor we

present the Power-Reliability Product (PRP), which we define

as:

PRP = Power Reduction ×AV F Reduction (3)

Figure 13 shows the PRP of our technique for various test

benches. It can be seen that the PRP value for α= 0 and α= 1 is

roughly equal in most of the test benches showing that

prioritizing either of the two factors achieve the same overall

results. Our observation is that choosing the registers for

partitioning solely on the basis of AVF proves to provide

exceptional reliability increase while giving us an acceptable

power reduction. It can be stated that sacrificing Reliability for

power in our technique is generally not advised unless there are

hard power limitations that can be achieved for a smaller value

of α.

FUTURE WORKS

In future works we intend to apply our technique to

multibank register file partitioning. Multi-bank register file

partitioning has been shown to achieve 10% -15% more power

reduction compared to the dual bank. Using more than two

register banks also gives us the chance to implement different

protection methods for different banks and will give us much

more flexibility to optimize power usage against vulnerability.

In fact, we can use different fault-tolerant techniques to protect

the partitions taking into account their vulnerability. This means

that for partitions having higher level of vulnerability, we can

employ more powerful protection techniques. This provides an

attractive trade-off between the reliability obtained and the

amount of overhead imposed.

CONCLUSION

In this paper we presented a novel register file partitioning

technique. Our technique differs from other method in its

approach to partitioning as not only a power saving technique

but also as a protection mechanism. With this approach, our

partitioning divided the register file into protected and

unprotected regions. We showed in our experiment on ARMv9

processor using MiBench that our technique can gain an AVF

reduction of 64 -79% while simultaneously achieving 11 -16%

power saving.

REFERENCES

[1] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A.

Veidenbaum, and A. Nicolau. Profile-based dynamic voltage

scheduling using program checkpoints. In DATE ’02:

Proceedings of the conference on Design, automation and test

in Europe, page 168, Washington, DC, USA, 2002. IEEE

Computer Society.

[2] Rajeev Balasubramonian, Sandhya Dwarkadas, and

Divid H. Albonesi.

Reducing the complexity of the register file in dynamic

superscalar processors. Microarchitecture, IEEE/ACM

International Symposium on, 0:037, 2001.

[3] Jason A. Blome, Shantanu Gupta, Shuguang Feng, and

Scott Mahlke. Cost-efficient soft error protection for embedded

microprocessors. In CASES ’06: Proceedings of the 2006

international conference on Compilers,

architecture and synthesis for embedded systems, pages

421–431, New York, NY, USA, 2006. ACM.

[4] Jos´e-Lorenzo Cruz, Antonio Gonz´alez, Mateo Valero,

and Nigel P. Topham. Multiple-banked register file

architectures. SIGARCH Comput. Archit. News, 28(2):316–325,

2000.

 L. Reikhtechi et al / IJNES, 7 (3): 36-42, 2013 42

[5] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin,

T. Mudge, and R.B. Brown. Mibench: A free, commercially

representative embedded benchmark suite. pages 3 – 14, dec.

2001.

[6] Mallik Kandala, Wei Zhang, and Laurence T. Yang. An

area-efficient approach to improving register file reliability

against transient errors. Advanced Information Networking and

Applications Workshops, International Conference on, 1:798–

803, 2007.

[7] Jongeun Lee and Aviral Shrivastava. Compiler-managed

register file protection for energy-efficient soft error reduction.

In ASP-DAC ’09: Proceedings of the 2009 Asia and South

Pacific Design Automation Conference, pages 618–623,

Piscataway, NJ, USA, 2009. IEEE Press.

[8] Xue mei Zhao and Yi zheng Ye. Structure configuration

of low power register file using energy model. In ASIC, 2002.

Proceedings. 2002 IEEE Asia-Pacific Conference on, pages 41–

44, 2002.

[9] Gokhan Memik, Mahmut T. Kandemir, and Ozcan

Ozturk. Increasing register file immunity to transient errors.

Design, Automation and Test in Europe Conference and

Exhibition, 1:586–591, 2005.

[10] S. Mitra, Ming Zhang, N. Seifert, T.M. Mak, and Kee

Sup Kim. Built-in soft error resilience for robust system design.

pages 1 –6, may. 2007.

[11] Shubhendu S. Mukherjee, Christopher Weaver, Joel

Emer, Steven K.

Reinhardt, and Todd Austin. A systematic methodology to

compute the architectural vulnerability factors for a high-

performance microprocessor. Microarchitecture, IEEE/ACM

International Symposium on, 0:29, 2003.

[12] Rakesh Nalluri, Rohan Garg, and Preeti Ranjan Panda.

Customization of register file banking architecture for low

power. In VLSID ’07: Proceedings of the 20th International

Conference on VLSI Design held jointly with 6th International

Conference, pages 239–244, Washington,

DC, USA, 2007. IEEE Computer Society.

[13] P. Roche, F. Jacquet, C. Caillat, and J.-P. Schoellkopf.

An alpha immune and ultra low neutron ser high density sram.

pages 671 – 672, apr. 2004.

[14] Jeff Scott, Jeff Scott, Lea Hwang Lee, Lea Hwang Lee,

John Arends, John Arends, Bill Moyer, and Bill Moyer.

Designing the low-power m*core architecture. 1998.

