
 

 

 

       
 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 

 
Multiple-input multiple-output (MIMO) system provides 

substantial benefits in both increasing system capacity and 

improving its immunity to deep fading in the channel    [1, 2]. 

To take advantage of these benefits, the accurate channel state 

information (CSI) is required at the receiver and/or 

transmitter. In the coherent receivers [1], channel equalizers 

[3], and transmit beamformers [4], the perfect knowledge of 

the channel is usually needed.  

Due to low complexity and better performance, training-

based channel estimation (TBCE) is widely used in practice 

for quasi-static or slow fading channels, e.g., indoor MIMO 

channels [5-10]. However, in outdoor MIMO channels where 

channels are under fast fading, the channel tracking and 

estimating algorithms as the wiener least mean squares (W-

LMS) [11], Kalman filter [12, 13], recursive least squares 

(RLS) [14], generalized RLS (GRLS) [15], and  generalized 

LMS (GLMS) [16] are used. 

In [5], the performance of the least squares (LS), scaled 

LS (SLS), minimum mean square error (MMSE), and relaxed 

MMSE (RMMSE) estimators is studied in the Rayleigh fading 

MIMO channel using TBCE scheme. The MMSE channel 

estimator has the best performance among the estimators, 

because it employs more a-priori knowledge about the 

channel. In [6-8], it is assumed that the MIMO channel has 

Rician distribution. Rician fading is characterized by the 

factor K which is the power ratio of the line of sight (LOS) 

and the diffused components.  

 

 

When K= 0, it represents Rayleigh fading, and no fading 

when K  ∞. Rician fading, thus, can be considered a general 

fading model for land mobile channels. An interesting result 

in [6] is that the optimal training sequence length can be 

considerably smaller than the number of transmitter antennas 

in systems with strong spatial correlation. For MIMO Rician 

flat fading channels, the new shifted scaled least squares 

(SSLS) channel estimator is presented in [8]. It is seen that 

this estimator has the best performance among the LS-based 

estimators in Rician channel model. Nevertheless, the MMSE 

channel estimator has lower error than that of SSLS in Rician 

fading channel model especially at high signal to noise ratios 

(SNRs) and spatial correlations [7].     

In [9], the performances of the time-multiplexed (TM) and 

superimposed (SI) schemes have been compared in MIMO 

channel estimation. It is shown that in fast fading channels 

and/or for many receiver antennas, the SI scheme is better 

than TM but in other cases this scheme suffers from a higher 

estimation error. In part II of this paper [10], to improve the 

performance of the SI scheme a decision directed approach is 

applied.  

In order to perform the individual channel estimation at 

the destination, in [17], the SI training strategy is applied into 

the MIMO amplify-and-forward (AF) one-way relay network 

(OWRN). The discussion is restricted to the case of a slow, 

frequency-flat block fading model. A specific suboptimal 

channel estimation algorithm is applied in [17] using the 

optimal training sequences and to verify the Bayesian Cramér-
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  Abstract  

  In this paper, the performance of the single-estimation (SE) and multiple-estimation (ME) is investigated in multiple-input multiple-
output (MIMO) Rician frequency-flat fading channels using the maximum likelihood (ML) technique, the new shifted scaled least squares 

(SSLS) estimator, and the minimum mean square error (MMSE) estimator. The closed form equations are obtained for mean square error 

(MSE) of the estimators in SE and ME cases under optimal training. Analytical and numerical results show that the ML estimator has lower 
error in the case of ME than SE. Moreover, it is seen that the performance of SSLS and MMSE channel estimators in the ME case is better than 

SE particularly at high signal to noise ratios (SNRs) and for weak line of sight (LOS) propagation paths. At low SNRs and for strong LOS 

propagation paths, and also for small numbers of sub-blocks used for channel estimation, the SSLS estimator is better than ML as well as the 
MMSE estimator is better than both estimators but in other cases the ML estimator is better than SSLS (MMSE). The un-equal power 

allocation is also investigated analytically and numerically. Simulation results show that exponential power allocation is an appropriate method 

in ME case. 
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Rao lower bound (CRLB) results the normalized mean square 

error (MSE) performance for the estimation is provided.  

In this paper, TBCE method is studied in the frequency-

flat Rician fading MIMO channels. First, the single-estimation 

(SE) is considered and the minimum MSE is obtained for 

maximum likelihood (ML), SSLS, and MMSE estimators 

under optimal training. Then, multiple-estimation (ME) is 

investigated in these estimators. In ME case, the multiple 

estimates of the channel during received N sub-blocks are 

combined optimally. The optimal weight coefficients are 

achieved for all estimators. Furthermore, the minimum MSE 

under optimal training is obtained for aforementioned 

estimators.  

Simulation results show that all estimators have better 

performance in the ME case than SE case especially at high 

SNRs and low Rice factors. At low SNRs and high Rice 

factors as well as for small numbers of sub-blocks used for 

channel estimation, the MMSE is better than SSLS (and ML). 

However, at high SNRs and low Rice factors and for large 

numbers of sub-blocks, the ML estimator is better than SSLS 

(and MMSE). Therefore, the SSLS and MMSE estimators are 

appropriate for Rician fading channels with a short coherence 

time (fast fading). For Rician fading channels with a long 

coherence time (slow fading), however, the ML estimator is 

better than SSLS (and MMSE).  

The un-equal power allocation is also considered in this 

paper. Using the SSLS and MMSE estimators, it is shown that 

in linear power allocation the results are analogous to the 

uniform power allocation. Nevertheless, in exponential power 

allocation the channel estimation errors are lower than the 

uniform power allocation. 

Notation: (٠) H is reserved for Hermitian, (٠)* for the 

complex conjugate, (٠) –1 for the matrix inverse, (٠) T for the 

matrix transpose,   for the Kronecker product, tr{٠} for the 

trace of a matrix. E{٠} is the mathematical expectation, I m 

denotes the m × m identity matrix, ||٠|| F denotes the Frobenius 

norm. vec (٠) stacks all the columns of its matrix argument 

into one tall column vector. 

  
SYSTEM MODEL 

 
 It is considered a MIMO system with t transmitter and r 

receiver antennas. The frequency-flat block fading model is 

assumed for MIMO channel. It means that the channel 

response is fixed within one block and can change from one 

block to another one randomly. Each transmitted block has N 

sub-blocks which contain training and data symbols as shown 

in Fig. 1. The frame structure is the same for all Tx antennas. 

Training and data symbols are located in the first and end part 

of the sub-blocks, respectively. In practice, the channel is 

estimated using training symbols in the training phase. Then, 

the results are used for data detection. To estimate the MIMO 

channel in each sub-block, it is required that n p ≥ t training 

signals are transmitted by each transmitter antenna. The r × n p 

complex received signal matrix can be expressed as 

Y HX V                                                                          (1) 

where X and V are the complex t -vector of transmitted 

sequences on the t transmit antennas and r -vector of additive 

receiver noise, respectively. The elements of noise matrix are 

independently and identically distributed (i.i.d.) complex 

Gaussian random variables as CN (0, 1).  

In MIMO Rician fading channels with K as Rice factor, 

the r × t matrix of channel, H, is defined in the following form 

[18, 19]: 

Ray LOS
1 1

H H H
+ +

 
 

 
                                       (2) 

The matrix HRay explains the Rayleigh component of the 

channel and the matrix HLOS describes the channel mean value 

or LOS component of the channel.  

 

 
 

Figure 1. Frame structure for each Tx antenna in a MIMO 

channel  

 

The MIMO channel model of (1) can be expressed in the 

following vector form: 

y Xh v                                                                              (3) 

where y = vec (Y), v = vec (V), T
r X X I  and 

Ray LOS

1
vec( )

1 1


  

 
h H h h                            (4) 

where hRay = vec (HRay), hLOS = vec (HLOS) and equation 

vec( ) ( )vec( )ABC C A B
T   is applied. The elements of hRay 

are identically distributed complex Gaussian random variables 

with the zero mean and the unit variance and hLOS is a 

deterministic vector. So, h will be a complex normally 

distributed vector, denoted as h ~ CN (m, Ch) where Ch and 

m are the co-variance matrix of the channel vector h and the 

mathematical expectation vector of h, respectively. Using (4), 

it is simple to show that 

LOSE{ }
1+


 


m h h                                                      (5) 

Also, the correlation matrix of the channel vector h can be 

computed as follows:   

Ray

LOS

LOS

Ray Ray LOS

LOS

1
E{ } E{ }

1 1

1

1 1

H H H

H


  

 


 

 

h

h

R hh h h h h

R h h

     (6) 

Then, the co-variance matrix of the channel vector h will be 

as: 

Ray

E{ }E{ } =

1

1

H H  




h h h

h

C R h h  R mm

R
                         (7)                                                   

 

SINGLE CHANNEL ESTIMATION 

 
In this section, it is supposed that the number of sub-

blocks used for channel estimation is N = 1. First, the ML 

channel estimator is probed. Then, the performance of the 

SSLS and MMSE channel estimators is investigated.  

 

ML Channel Estimator 

In classical estimation, the channel is assumed to be 

unknown deterministic. For linear model of (3), the ML 

estimator which maximizes the joint probability distribution 

function (pdf) of (8) is optimal [20]. 
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( )

1

1
( ; )

det( )

exp[ ( ) ( )]

pr n

H

P




   

v

v

y h
C

y Xh C y Xh
-

                (8) 

Clearly, for noise vector in (3), the co-variance matrix is 

E{ }v vC R v v I
H

pr n                                                     (9) 

Therefore, the ML estimator which is equal with the LS 

estimator in model (3) can be defined in the following form: 

ˆ argmin ( ) ( )
h

h y Xh y XhML

H                                 (10) 

By differentiating ( ) ( )y Xh y Xh
H   with respect to h and 

setting the result equal to zero, the result is 

1ˆ ( )h X X X y
H H

ML

                                                         (11) 

Using equation vec( ) ( )vec( )ABC C A B
T  , (11) can be 

expressed in the following matrix form: 

1ˆ ( )H Y X XX
H

ML

H                                                       (12) 

The error of the estimator is  

2 1ˆE{|| || } {( ) }
MLML

H
FJ r tr   h h XX                        (13) 

It is shown that the optimal training matrix should satisfy the 

following equation [5, 8]:  

H
t

p

t
X X I                                                                      (14) 

Using (13) and (14), the error of ML estimator is minimized 

as follows:  

(min)

2

ML

t r
J

p
                                                                      (15) 

where p is a given constant value as the total power of training 

matrix X. This estimator achieves the classical CRLB, hence, 

it is efficient. However, the ML estimator utilizes only 

received signals and transmitted symbols that are given at the 

receiver. It has no knowledge about the channel.  

 

SSLS Channel Estimator 

Consider (3), the SSLS channel estimator can be 

expressed in the following form  

ˆ ˆh h b
SSLS LS                                                                    (16) 

where ĥLS
 is the LS estimation of the channel. The SSLS 

estimator is the shifted type of SLS [5] which has been 

proposed in [8]. The scaling factor, γ, and the shifting vector, 

b, have to be obtained so that the MSE, 
2ˆE{|| || }SSLS SSLS FJ  h h , is minimized. 

Using (16), the MSE of the SSLS estimator can be 

computed as follows  

 

2

2

ˆE

ˆ ˆE{( )( ) }

(1 { } ( 1) {

} { }

H

H

H H

LS

LS LS

SSLS
F

LS

J

tr

tr tr

tr J



 
    

 

      

     

   

h

h h b

h h b h h b

R mb

bm bb

            (17) 

By differentiating (17) with respect to γ and b and setting the 

results equal to zero, the results are 

2(1 ) { } { } 2 0H H

LStr tr J       hR mb bm            (18) 

( ) 0* *
m b                                                                  (19)    

Using (19), the SSLS estimator of (16) can be rewritten as 

(20) and using (18) and (19), the scaling factor can be written 

as (21).   

ˆ ˆ (1 )h h m
SSLS LS                                                             (20) 

{ }

{ } LS

tr

tr J
 



h

h

C

C
                                                               (21) 

According to [8], optimal training for LS (that is equal 

with ML in this paper) and SSLS estimators is identical. Using 

(19) and (21), the MSE (17) under optimal training minimizes 

as follows: 

(min)

2

2

{ }

{ }
SSLS

r t tr
J

r t p tr




h

h

C

C


 

MMSE Channel Estimator 
For linear model of (3), the MMSE channel estimator of h 

is given by [20] 

ˆ ( )MMSE   h m A y X m                                                 (23) 

where 

11 1( ) ( )H H H H
rt

    h h hA C X XC X I C X X X      (24) 

The performance of the MMSE channel estimator is 

measured by the error matrix ε = h –   MMSE, whose pdf is 

Gaussian with zero mean and the following covariance matrix: 

1 1E{ } ( )H H    ε ε hC R εε C X X                               (25) 

The MMSE estimation error is given by 

2

1 1

ˆE E{ ( )}

{E( )} { } {( ) }

H
MMSE MMSE

F

H H

J tr

tr tr tr
 

 
   

 

   ε h

h h εε

εε R C X X

  (26) 

To minimize (26) subject to the transmitted power constraint 

{ }Htr pXX  or { }Htr r pX X , the Lagrange multiplier 

method is used. The problem can be written as follows:  

1 1( , ) {( ) }

[ { } ]

H H

H

L tr

tr r p





  

 

hX X C X X

X X
                                 (27) 

where η is the Lagrange multiplier. By differentiating (27) 

with respect to X  and setting the result equal to zero, it is 

obtained that the optimal training matrix should satisfy the 

following equation: 

1 1H
r t




 hC X X I                                                         (28) 

Using the constraint { }Htr r pX X , it can be readily shown 

that the optimal probing must satisfy the following equation: 
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1
1{ }H

r t

tr r p

r t




 h
h

C
X X I C                                     (29) 

Substituting (29) back into (26), the MSE will be minimized 

as  

(min)

2 2

1
{ }

MMSE

r t
J

tr r p



hC

                                               (30) 

 

MULTIPLE CHANNEL ESTIMATION 

 
In order to improve the performance of the estimators, the 

multiple estimates of the channel during received N sub-

blocks are combined. In this section, it is assumed that the 

channel response is fixed within N sub-blocks. In other words, 

the coherent time of the channel is enough to use N sub-blocks 

for channel estimation. Suppose that N estimates 
1
ˆ ˆ, ...,h h

N
 of 

the MIMO channel are obtained based on the training matrices 

1 ,..., NX X , respectively. The results are combined in the 

following linear method:   

ME
1

ˆ ˆh h
N

n n
n

a


  

where the optimal weight coefficients 
1 ,..., Na a  are obtained 

so that the MSE (32) is minimized subject to 
1

1
N

n

na


 . 

2

1

ˆEME

N

n n
n F

J a


  
   

  

h h 

Then, the optimization problem is                    

1

2

,..., 1 1

ˆmin E . 1
N

N N

n n n
a a n nF

a S T a
 

  
   

  

h h             (33)

In this section, the problem (33) will be solved considering the 

ML, the SSLS, and the MMSE channel estimators.  

 

Multiple ML Estimation 

Using (3), the ML estimator (11) can be rewritten as 

1ˆ ( )h h X X X v
H H

ML

                                                   (34) 

Using (34) and the constraint 
1

1
N

n

na


 , the error of the 

multiple ML estimation will be written as 

2

1

2
1

1

2
1

1

1 1

*

1 1

ˆE

E ( ( ) )

E ( )

E{ {( ) ( ) }}

{ E{ }

Multiple ML

N

n n
n F

N
H H

n n n n n
n F

N
H H

n n n n n
n F

N N
H H H

n n n n m m m m
n m

N N
H H

n m n n n m m m
n m

J a

a

a

tr a a

tr a a











 

 

  
   

  

  
   

  

  
  

  

  

  

h h

h h X X X v

X X X v

Ε X v Ε X v

Ε X v v X Ε

2

1

}

{ }
N

n n
n

tr a


  Ε

 (35) 

where T
n n r X X I , 1( )H

n n n
Ε X X , and the latter one is 

obtained using the following equation: 

;
E{ }

;

pr nH
n m

n m

n m


 



I
v v

0
                                           (36) 

Then, for multiple ML estimation, the problem (33) can be 

written as 

1

2

,..., 1 1

min . 1
N

N N

n n n
a a n n

tr a S T a
 

 
  

 
Ε                     (37) 

The ML estimator is unbiased. The constraint in (37) 

guarantees that the multiple ML estimation is also unbiased.  

To solve (37), the Lagrange multiplier method is used. 

The problem can be written as    

1

2

1 1

( ,..., , ) 1
N

N N

n n n
n n

L a a tr a a
 

   
       

   
Ε              (38) 

To find 
1 ,..., Na a , the partial derivatives of (38) with respect 

to ( 1,2,..., )ia i N  are computed. Then, the results are set 

equal to zero. Finally, the optimal weight coefficients in the 

multiple ML estimation are obtained from:     

1

1
; 1,...,

{ } 1/ { }
n N

n l
l

a n N

tr tr


 

Ε Ε

                        (39) 

It is straightforward to show that under optimal training for 

ML estimator 

1 2{ } {( ) } /H
n n n ntr tr r t p Ε X X                                  (40)  

where p n is the total power of training matrix X n which is used 

during the training phase in the sub-block n. Suppose that 

n np k p  is the transmitted power during the n-th 

( 1,..., )n N  training period and 
1

N

n

tot np p N p


    is the 

total transmitted power during the N training periods. Then 

1

N

n

nk N


  and using (40), the optimal weight coefficients 

(39) can be rewritten as 

2 2

1 1

1

( / ) ( / )
n

n n

N N

n l l
l l

k p k
a

N
r t k p p r t p

 

  

 

                (41) 

Using (40) and (41), under optimal training, the MSE (35) is 

minimized as follows  

(min)

2 2

2
1

N

Multiple ML n
n

r t r t
J k

N pp N 

                                 (42) 

Comparing (42) and (15), it is seen that in the multiple ML 

estimation, the error reduces by the number of sub-blocks N 

which is used for channel estimation. It is notable that the 

error (42) is independent of p n, the transmitted power during 

the n-th training period. It means that for uniform training 

powers and non-uniform training powers during N training 

periods, the error is the same.  
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Multiple SSLS Estimation 
The SSLS channel estimator (20) can be rewritten as 

1ˆ ( ) (1 )h h X X X v m
H H

SSLS

                                  (43) 

Using (43), the MSE of multiple SSLS estimator is expressed 

as 

2

1

2

1

2

1 1 1

1 1 1

ˆE

E ( (1 ) )

E (1 ) (1 )

E{ {((1 ) (1 )

Multiple SSLS

N

n n
n F

N
H

n n n n n n n
n F

N N N
H

n n n n n n n n n
n n n F

N N N
H

n n n n n n n n n
n n n

J a

a

a a a

tr a a a





  

  
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                                                                                             (44) 

Using (9), (36), 
1

1
N

n

na


 , and with some calculations the 

result is   

* *

1 1

2 2

1

(1 )(1 ) { }
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Multiple SSLS

N N

n n n n
n n
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 

hC

E

             (45) 

It is noteworthy that the elements of h and v are independent 

of each other and E{v}= 0. Moreover, m and Ch are 

independent of N while X  and v are dependent to N. The 

optimization problem is  

1 ,..., 1

min . 1
N

Multiple SSLS

N

n
a a n

J S T a


                                    (46) 

The SSLS estimator is biased. The constraint in (46) 

results in that the multiple SSLS estimation is also biased. 

Using the Lagrange multiplier method, the result is 

1

* *

1 1

2 2

1 1
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     (47) 

By differentiating (47) with respect to ( 1,2,..., )ia i N  and 

setting the results equal to zero the result is 

2* * *

1

(1 ) { } { }
N

i n n i i i
n

a tr a tr


        hC E           (48) 

In general, equation (48) cannot be solved analytically. 

Nevertheless, in the uniform power allocation 

1 ... /N totp p p N p     where 1γ ... γ γN    and 

1 ... N  E E E , (48) can be rewritten as: 

2* *(1 ) { } { }itr a tr       hC E                                (49)  

Using 
1

1
N

n

na


 , the result for Lagrange multiplier will be 

2

*(1 ) { } { }tr tr
N


     hC E                                         (50) 

Substituting (50) back into (49), the result is  

1
; 1,...,na n N

N
                                                       (51) 

Using (21), (40), and (51), it is shown that under optimal 

training the MSE (45) is minimized as  

(min)
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                      (52) 

When N =1, (52) reduces to the special case of (22) for single 

channel estimation with the SSLS estimator. According to 

(52), it is seen that the error decreases when the number of 

sub-blocks N increases.  

In the non-uniform power allocation, n np k p , 

1

N

tot n
n

p p N p


   , 
1

N

n
n

k N


 , suppose that /n na k N  

for n = 1, 2, …, N. It is shown numerically and analytically 

that the performance of SSLS estimator is improved in the 

non-uniform power allocation. With some calculations, the 

MSE (45) is minimized in this case as 

(min)

2
2

2
1

2 3
2

2 2
1

{ }
{ } 1

{ }

{ }

( { } )

Multiple SSLS

N
n

n n

N
n

n n

tr k
J tr p

N k p tr rt

tr k
p r t

N k p tr rt





 
   

  

 
  

 

h
h

h

h

h

C
C

C

C

C

                                                                                             (53) 

when 1nk  , (53) reduces to (52).   

 

Multiple MMSE Estimation 

Using (3) and (23), the MMSE channel estimator can be 

rewritten as 

ˆ ( )MMSE    h m AX h  m Av                                      (54) 

Using (32) and (54), the MSE of multiple MMSE channel 

estimator is expressed as 
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                                                                                             (55) 
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where  
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                                   (56)  

Using (36), (56), and with some calculations, the MSE (55) 

can be expressed as 

1
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The optimization problem is  

1 ,..., 1

min . 1
N

Multiple MMSE

N

n
a a n

J S T a


                           (58) 

The MMSE estimator is biased. The constraint in (58) 

results in that the multiple MMSE estimation is also biased. 

The Lagrange multiplier method is used as  

1

1

( ,..., , ) 1
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N

n
n

L a a J a


 
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                   (59) 

The partial derivatives of (59) are obtained with respect to 

( 1,2,..., )ia i N , then, the result is set equal to zero as  

*
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H H
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The optimal training condition in MMSE channel 

estimator, 1 1
(( { } ) / )H

i i i r ttr r p rt
 

  h hX X C I C , is used 

and with some calculations it is seen that (60) reduces to 
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In the uniform power allocation, 
1 ... /N totp p p N p    , 

using 
1

1
N

n

na


 , (61) reduces to 
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Using (62) and 
1

1
N

n

na


 , the Lagrange multiplier can be 

obtained as  

3 2

1 2

( 1)
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hC
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Substituting (63) back into (62), it is shown that in the 

uniform power allocation 
na  is same as (51). Using (51) and 

under optimal training, the MSE (57) is minimized in the 

uniform power allocation as    

(min)
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                                                                                             (64)   

When N =1, (64) reduces to the special case of (30) for single 

channel estimation with the MMSE estimator. According to 

(64), it is seen that the error decreases when the number of 

sub-blocks N increases. 

In the non-uniform power allocation, n np k p , 
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tot n
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

   , 
1

N

n
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 , suppose that /n na k N  

for n = 1, 2, …, N. With some calculations, it is shown that the 

MSE (57) is minimized as 
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When 1nk  , (65) reduces to (64).  

 

SIMULATION RESULTS  
 

In this section, the performance of the ML, SSLS, and 

MMSE estimators is numerically examined in the case of SE 

and ME. As a performance measure, it is considered that the 

channel MSE is normalized by the average channel energy as 

2

2

ˆ{|| || }

{|| || }

F

F

E
NMSE

E




h h

h
                                                   (66) 

Same as [21], the correlation matrix, 
RayhR , is assumed to 

be  

Ray
 h t rR R R                                                                  (67) 

Where 
tR  and 

rR  are the spatial correlation matrix at the 

transmitter and receiver sides, respectively. In simulation 

process, it is assumed that the elements of the spatial 

correlation matrices are [22] 

 
, ,

, 1, , 1
i j i j

i j i j
   

 
     t rR R     (68) 

Fig. 2 shows Normalized MSE (NMSE) of the ML 

channel estimator with optimal training versus SNR in the 

case of SE and ME. According to this figure, increasing the 

number of the sub-blocks N results in a lower error of the 

estimation. In other words, the performance of the ML 

estimator in ME case is better than SE case. Clearly, the 

performance of the ML estimator is independent of the 

channel Rice factor, K, and the correlation coefficients, α and 

β. 

Figs. 3 and 4 indicate the NMSE of the SSLS channel 

estimator in the case of SE [8] and ME for K= 2, 10 dB, 

respectively. As depicted in these figures, the SSLS estimator 

has better performance in ME case than SE especially at high 

SNRs and low Rice factors. However, at low SNRs, the 

NMSEs of the estimator for various numbers of sub-blocks N 

are analogous particularly for high values of K. It is notable 
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that the performance of the SSLS channel estimator is 

independent of the correlation coefficients, α and β. It is not 

shown here because of low space and its clarity (see [8]).   
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Figure 2. Normalized MSE of the ML estimator in the case of SE (N 

= 1) and ME (N = 2, 4, 6, 8) for K = 2, 10 dB (r = t = 2, α = β = 0.5) 
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Figure 3. Normalized MSE of the SSLS estimator in the case of SE 
(N = 1) and ME (N = 2, 4, 6, 8) for K = 2 dB     (r = t = 2, α = β = 0.5) 
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Figure 4. Normalized MSE of the SSLS estimator in the case of SE 

(N = 1) and ME (N = 2, 4, 6, 8) for K = 10 dB    (r = t = 2, α = β = 0.5) 

 

In Figs. 5 and 6, the NMSE of the MMSE channel 

estimator is also shown in the case of SE [7] and ME for K= 2, 

10 dB, respectively. The results are same as Figs. 3 and 4 for 

SSLS estimator. Moreover, the performance of MMSE 

estimator is better than SSLS at low SNRs and high K and low 

number of N. On the other hand, it is seen that in the ME case 

for large numbers of N and at high SNRs, the error of SSLS 

estimator is lower than MMSE especially for low K. These 

results are also confirmed by Figs. 7 and 8.  

In Figs. 7 and 8, the performance of the ML, SSLS and 

MMSE estimators is compared for various SNRs, Rice 

factors, and the number of sub-blocks N. It is seen that at low 

SNRs and high Rice factors as well as for small numbers of N, 

the SSLS estimator is better than ML. Moreover, the MMSE 

estimator is better than both estimators in this case because the 

MMSE estimator can employ more a priori knowledge about 

the channel than the SSLS estimator [7]. The NMSEs of the 

estimators coincide at high SNRs and low Rice factors. On the 

other hand, at high SNRs and low Rice factors and for large 

numbers of N, the ML estimator is better than SSLS (and 

MMSE). However, at low SNRs the performance of the SSLS 

and MMSE estimators is still better than ML particularly for 

high values of K. Therefore, in the Rician channels with a 

long coherence time and hence large N, the ML estimator is 

generally an appropriate method but in channels with a short 

coherence time and hence small N, the SSLS and MMSE are 

mainly better than ML.  
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Figure 5. Normalized MSE of the MMSE estimator in the 

case of SE (N = 1) and ME (N = 2, 4, 6, 8) for K = 2 dB         

(r = t = 2, α = β = 0.5) 
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Figure 6. Normalized MSE of the MMSE estimator in the case of SE 

(N = 1) and ME (N = 2, 4, 6, 8) for K = 10 dB   (r = t = 2, α = β = 0.5) 
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Figure 7. Normalized MSE of the ML, SSLS, and MMSE estimators 

vs. the number of sub-blocks for various SNRs  (r = t = 2, K = 0 dB, α 

= β = 0.5) 
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Figure 8. Normalized MSE of the ML, SSLS, and MMSE estimators 
vs. the number of sub-blocks for various SNRs  (r = t = 2, K = 10 dB, 

α = β = 0.5) 

 

The results in Figs. 9 and 10 are obtained considering non-

uniform power allocation during N sub-blocks that are used 

for channel estimation. In these figures, the SSLS and MMSE 

channel estimators are used respectively. The proposed non-

uniform power allocations are linear and exponential schemes 

as follows: 
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It means that the optimal weight coefficients, a n, have the 

linear and exponential distribution, respectively. In Figs. 9 and 

10, the results are compared with uniform power allocation. It 

is seen that the error with linear power allocation is very close 

to the error with uniform power allocation. However, the 

exponential power allocation has lower error than the uniform 

power allocation with both estimators.     

In practice, to obtain the best result in channel estimation, 

one of the ML, SSLS, or MMSE methods can be used 

considering the values of K, SNR, the number of antennas and 

N (or channel coherent time) in (42), (53), and (65). In order 

to choose the best estimator among the ML, SSLS, and 

MMSE channel estimators, the NMSEs of (42), (53), and (65) 

can be computed and compared at the receiver.  
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Figure 9. Normalized MSE of the SSLS estimator in uniform power 

and non-uniform power allocation (r = t = 2, N= 8, K = 5 dB, α = β = 

0.5) 
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Figure 10. Normalized MSE of the MMSE estimator in uniform 

power and non-uniform power allocation (r = t = 2, N= 8,   K = 5 dB, 

α = β = 0.5) 

 

CONCLUSION  

 
The performance of ML, SSLS, and MMSE estimators in 

the case of SE and ME has been probed in the Rician 

frequency-flat fading MIMO channels. In the both SE and ME 

cases, the channel estimation errors have been obtained under 

optimal training. In the case of ME, the optimal weight 

coefficients and MSE are achieved for aforementioned 

estimators with uniform and non-uniform power allocations.  

Analytical and numerical results show that the MSE of all 

estimators decreases when the number of sub-blocks N is 

increased. For small values of N, suitable for estimation of the 

channel with fast fading, the MMSE estimator is better than 

SSLS (ML) especially at low SNRs and high Rice factors. 

However, for large values of N, proper for estimation of the 

channel with slow fading, the ML estimator is better than 

SSLS (MMSE) particularly at high SNRs and low Rice 

factors. It is also shown that the performance of the SSLS and 

MMSE estimators in the un-equal power allocation is better 

than equal power allocation.  
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As a result, in slow/fast fading MIMO channels with a 

long/short coherence time, one of the above mentioned 

estimators can be used considering the MIMO channel 

parameters same as the channel Rice factor, the correlation 

matrix of the channel, the channel coherence time, and SNR.  
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