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Abstract 

This paper describes the fractional order proportional integrated derivation (FOPID) controller for synchronization between two 

fractional order chaotic systems. For performance test of the synchronization controller, controller was applied to chaotic communication 

system. Chaotic masking that one of the chaotic communication methods has two chaotic systems, and the systems must be synchronized. 
FOPID controller has some disadvantages that tuning of parameters and orders are difficult. For the disadvantage, FAPSO can used to tune 

the parameters of FOPID. The FAPSO method utilizes fuzzy set theory, in order to determine acceleration coefficient adaptability in particle 

swarm optimization. FAPSO is one of the fast optimization methods in literature. According to the results in the paper and the other papers in 
the literature, FOPID control method and the algorithm are able to produce correct results. The advantage of the proposed method is provided 

fast synchronization and recovery time. 

 

Keywords: Chaotic Communication, Fractional order chaotic systems, Fractional order Proportional Integrated Derivation (FOPID), 

Adaptive Fuzzy Particle Swarm Optimization (FAPSO). 

  

 

 

INTRODUCTION 
 

Synchronization of fractional chaotic systems is a novel 

topic in nonlinear science due to applications in control, 

chaotic communication, signal processing, and so on [1-4]. 

In 2003, chaotic behavior in fractional order Lorenz 

systems was investigated by Grigorenko et al. [5]. Since 

chaotic systems are sensitive to initial conditions, the 

systems generate dissimilar signals in different initial 

conditions. Therefore, the purpose of synchronization is to 

provide to generate similar waveforms for two identical 

chaotic systems (these are called master and slave) [6]. 

Since the 1990s, applications of chaotic systems in 

communication have used different methods such as 

chaotic masking method, chaotic shift keying, etc. In the 

chaotic masking method, this is based on chaotic 

synchronization [7-8]. One approach for the chaotic 

masking is by adding the information signal to the noise 

like chaotic signal. The detection is accomplished by 

regenerating and subtracting the chaotic signal from the 

received signal [9]. Then, the information signal can be 

obtained from the difference between the received signal 

and one of the variables of the slave chaotic system that is 

synchronized with the master chaotic system. In order to 

provide the synchronization of chaotic systems, different 

control methods can be used such as classic PID, 444neural 

fuzzy, fuzzy logic [10-13]. The purpose of these control 

methods is to reduce the time taken to reach 

synchronization. The fractional order controller is one of 

these methods. 

 

 

Although fractional order calculus is an old 

mathematical method dating back to the 1600s, the first 

applications of this method in engineering were realized in 

1900s. Recently, fractional order systems and controllers 

that are based on fractional calculus have been the focus of 

attention [14-17]. Fractional order proportional integrated 

derivation (FOPID) is a control method also known as 

PIλDμ. Here, μ and λ can be any real numbers [18]. A 

significant issue in the FOPID method is to determine the 

FOPID parameters. In the literature, there are studies on 

tuning the parameters and some of these solutions are based 

on intelligent systems [16].   Particle swarm optimization 

(PSO) can also be used to tune and optimize the 

parameters. 

PSO is a search technique based on populations to get 

optimal solutions [19]. Some of the features of PSO are that 

it improves the capability of solving complex problems and 

there is high convergence speed for different problems 

[20]. Population size is an important factor for the search 

period and optimal solution. Recently, different methods 

have been developed by researchers. One of the methods is 

the fuzzy adaptive particle swarm optimization (FAPSO) 

method [21]. In this method, acceleration constants and 

inertia weights are adaptively changed by algorithms in any 

iteration.  

In this paper, we present a control method that has 

several advantages for synchronization. The FOPID control 

method is used for synchronization and provides high speed 

synchronization. However, FOPID has a problem with 

tuning the parameters. FAPSO is used to solve the problem 

and this optimization method has proved to be more 

efficient and accurate than the classic PSO method. 
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Fractional Order Chaotic Systems And Fopid  

Fractional calculus:  Fractional order systems are based 

on fractional calculus. Although fractional order calculus is 

old mathematical method, researchers are still studying 

solutions using this method. Fractional order systems have 

many solution techniques. These techniques are the 

Grunwald–Letnikov (GL) method (Eq. 1) and the 

Riemann–Liouville (RL) method (Eq. 2). The GL equation 

is described as follows: 
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Another technique is the Laplace transformation 

method. Laplace transformation can also be used for 

numerical solutions of fractional systems [23-25]. In zero 

initial conditions, the Laplace transforms of fractional 

systems are defined as follows:  
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There are many approaches to solving sμ Laplace 

operators. Some of these approaches are the Crone, Carlson 

and Matsuda methods. The most widely used 

approximation of sμ is Crone. 

Crone is a French acronym (non-integer order robust 

control — Commande Robuste d’Ordre Non-Entier) [26]. 

In fractional order systems, Laplace and Crone 

approximations are useful methods. Therefore, several 

research studies use these approximations. 

Fractional Order Lorenz Chaotic System:  Lorenz 

systems, which are adopted for chaotic communications, 

are used in many research articles [27-28]. Firstly, the 

Lorenz equation is used for weather forecasts [29]; it is also 

used in different applications.  

In the fractional order Lorenz system [5], the 

conventional derivative is replaced by the fractional 

derivative, as  
.
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where the order of the system is equal to α=0.9. 

 

Figure 1 demonstrates the chaotic attractor for the 

fractional order Lorenz. 

Synchronization of Fractional Order Chaotic Lorenz 

System : If two identical chaotic systems have different 

initial conditions, the systems generate different 

waveforms. The purpose of synchronization is to generate 

similar waveforms using two identical chaotic systems in 

different initial conditions. Many kinds of synchronization 

have been found, such as generalized synchronization, 

phase synchronization, lag synchronization and partially 

synchronization [30-34].  

 
Fig.1. Fractional Lorenz chaotic attractor. 

 

In generalized synchronization, a control input is added 

to the slave chaotic system [31]. The mathematical 

equations of the slave systems of fractional order Lorenz 

are given below:  
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where u is the control variable. 

 

FOPID : A PID controller based on the feedback 

control system is widely used in industrial control systems. 

The PID controller has the following transfer function: 
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In the transfer function of PID, there are three constant 

parameters: the proportional constant (Kp), derivate time 

constant (Kd) and integral time constant (Ki). In the PID 

controller, the derivation and integration orders are equal to 

1. We can go for a generalization for the PID controller, 

which can be called the PIviDvd controller, because vi and vd 

belong to the set of real numbers [18].  

The FOPID controller has the following transfer 

function: 
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where if vi and vd are both equal to 1, we obtain a classic 

PID controller. The FOPID controller has five parameters: 

proportional (Kp), derivative time (Kd), integral time (Ki), 

constants and orders of the derivative (vd) and integral (vi). 

In FOPID, the determination of these parameters is an 

important problem. The PSO method is one of the useful 

methods for solving the problem. 

 

FAPSO 

Review of PSO:  Particle swarm optimization was first 

introduced by Kennedy and Eberhart in the mid-1990s. 

This method is similar to the process used by a flock of 

birds when searching for food [19]. The PSO algorithm 

comprises a swarm of particles moving in the D-

dimensional search space and includes all possible 
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candidate solutions. In the search space, Pbest denotes the 

personal best position the ith particle has found so far, and 

gbest is the global best position discovered by the swarm. 

Velocities and positions are updated as 

 
1

1 1 2 2. .( ) . .( )d d d d d d d d

i i i i iV V c rand Pbest X c rand gbest X     
 

                                   (8) 
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where rand1 and rand2 are two random number in [0 1]; c1 

and c2 are called acceleration constants and are two 

positive constants. Researchers have modified Eq. (8) as 
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(10) 

where ω is the inertia weight and is defined as  
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where imax is the maximum iteration, ωmax and ωmin are the 

limits of the inertia weight and k is the current iteration 

number [35]. Empirically, these values are taken as  

 

ωmax=0.9, ωmin=0.4, c1 and c2=2. 

 

FAPSO :  In standard PSO, some values (ωmax, ωmin, c1 

and c2) are taken as constants that have been inspired by 

other studies. For the best results, these values can be 

different for each iteration and each study. Therefore, it is 

thought [36-38] that, if the inertia weight and learning 

constants are adaptive variables, the results will be better 

than those for classic PSO.  

In PSO, c1 pulls the particle to its own historical best 

position and maintains the diversity of the swarm; c2 

pushes the swarm to the current globally best region with 

fast convergence. There are four states: the exploration 

state, exploitation state, convergence state and jumping-out 

state. In the exploration state, c1 is increased and c2 is 

decreased. In the exploitation state, c1 is slightly increased 

and c2 is slightly decreased. In the convergence state, c1 and 

c2 are slightly increased. In the jumping-out state, c1 is 

decreased and c2 increased [39]. 

In order to calculate the acceleration constants (c1 and 

c2), the fuzzy method is thought to be very successful. 

dg
denotes the difference between the gbest for two 

consecutive iterations at iteration t: 
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where gmax and gmin are the maximum and minimum values 

of the best fitness function. For this paper, these values are 

selected as gmax=150, gmin=10. c1≤1, c2≤2 and ω is; 
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In [33], the σ and ε constants are respectively taken as 

1.5 and -2.6. The membership functions of the four states 

are depicted in Figure 2. 

 
Fig.2. Membership function. 

 

The fuzzy logic system, used to calculate the values of 

c1 and c2, has one input and two outputs. At the initial 

condition, the value of c1 is selected as large and the value 

of c2 is selected as small. The fuzzy system has the 

following rules: 

 

Rule 1: if dg is convergence, then c1 and c2 are slightly 

decreased. 

Rule 2: if dg is exploitation, then c1 is slightly increased 

and c2 is slightly decreased 

Rule 3: if dg is exploration, then c1 is increased and c2 is 

decreased 

Rule 4: if dg is jumping-out, then c1 is decreased and c2 is 

increased. 

 

The acceleration constant and weight inertia are 

constants in standard PSO. However, in the FAPSO 

method, these values are changed adaptively by the fuzzy 

system as follows: 

 

Step 1: randomly generate initial positions and velocities 

for all generations. The value of c1 is selected as large; the 

value of c2 is selected as small. 

Step 2: adjust adaptively the acceleration constant and 

weight inertia using equations (12) and (13) and the rules.  

Step 3: store the positions of each particle and select the 

best position (Pbest) and global best position (gbest) of the 

particle according to the fitness function 

Step 4: the position and velocity of each particle is updated 

using equations (8) and (9) 

Step 5: the fitness function is calculated for the new 

positions. If the new positions achieve the better result, the 

Pbest is updated by the position 

Step 6: gbest is updated according to Pbest 

Step 7: if the number of iterations reaches the maximum or 

the result reaches the desired value, the latest gbest is the 

optimal solution. Otherwise, go to step 2 and repeat the 

other steps until the desired value is reached. 

 

Chaotic Communication And Control of 

Synchronization 
 

There are many kinds of chaotic communication, such 

as chaotic masking, chaotic shift keying, etc. In the chaotic 

masking method, the information signal is added to the 

chaotic signal at the transmitter. In the receiver, the signal 

received from the public channel is removed from the 

chaotic signal that is generated by the slave chaotic system 

(synchronized with the master system in the transmitter). A 

block diagram of chaotic masking is shown in Figure 3 
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[22]. In chaotic masking, to remove masking, master and 

slave chaotic systems must be synchronized. Therefore, 

synchronization control is required. 

 
 

Fig.3. Block diagram of chaotic masking. 

 

Chaotic communication systems have two chaotic 

systems, the master and slave chaotic systems, and both of 

them must be synchronized for chaotic communication. A 

block diagram of the FOPID that is used for 

synchronization control is shown in Figure 4. The 

synchronization error between the state variable of the 

master and slave chaotic systems is applied to the FOPID 

controller to produce the control signal.  

 
 

Fig.4. Block diagram of FOPID for chaotic communication. 

 
Transfer function of the FOPID controller is; 
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where (an, an-1,…, a1, a0), (bn, bn-,…, b1, b0) are dependent 

on µ, (cn, cn-1,…, c1, c0) and (dn, dn-1,…, d1, d0) are 

dependent on λ.  

Determining the parameters is great importance for the 

FOPID controller. In this paper, we are used FAPSO 

method to solve this problem. 

  

SIMULATION RESULTS 
 

Optimization of FOPID using FAPSO:  Intelligent 

optimization methods like the genetic algorithm and PSO 

have been used to determine the parameters of the 

controller since the discovery of intelligent optimization 

methods. FAPSO is used for the rapid optimization of the 

FOPID parameters (Kp, Kd, Ki, vd and vi).  

 The flowchart for the FAPSO algorithm is given in 

Figure 5. At the first step, the algorithm randomly 

determines the initial value of the parameters (Kp, Kd, Ki, vd 

and vi). The initial values of the acceleration constants (c1 

and c2) and weight inertia (w) are also determined 

randomly. Then the value of the fitness function is 

calculated using the function of ISE (the integral of the 

squared error), which is determined as  

 

2

0

( )

T

ISE e t dt      (15) 

where T is period of the integral. 

 
Fig.5. Flowchart of the FAPSO algorithm. 

 

By using FAPSO, we get good results for the 

coefficient optimization of FOPID and this result can be 

seen as a convergence curve (Figure 6). 

 

 
 

Fig.6. Convergence curve of FAPSO. 

 

Synchronization and application of chaotic 

communication using FOPID. With the classic PID 

controller, the synchronization error reaches the point of 

zero after a long period. After the parameters of FOPID are 

optimized, the synchronization error has reached the zero 

point after quite a short period. This result, namely that the 

system reaches synchronization after quite a short period, is 

seen Figure 7.  

The synchronization errors of FOPID and the classic 

PID that are optimized by FAPSO are shown in Figure 7 

and Figure 8 respectively. It is evident from Figure 7 and 

Figure 8 that FOPID performs better than classic PID does. 

The optimized parameters of FOPID are  

 

Kp=24.89, Ki=6.82, Kd=2.21 vd=0.51, vi=0.11 
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According to parameters of reference [10] and 

optimized parameters of classic PID and FOPID, the 

synchronization error is shown in Figure 9. 

 
Fig.7. Synchronization error of the FOPID control method for 
optimization by FAPSO. 

 

 
Fig.8. Synchronization error of the classic PID control method. 

 

 
Fig.9.  Synchronization error of Ref [10], optimized of the 
parameters Classic PID and FOPID. 

 

Effects of the FOPID control method on the chaotic 

communication system  The effects of the classic PID and 

FOPID methods on the chaotic communication system are 

examined; the synchronization occurs after a short period 

and ensures minimum data loss. The transmitted and 

received data are analyzed; the data loss of the chaotic 

communication system that uses the FOPID control method 

and Lorenz chaotic system is very low and this is shown in 

Figure 10 and Figure 11.   

The results are given in Table 1 for different PID 

synchronization algorithms. It is clearly seen that FOPID 

control method has better performance than the control 

methods algorithms given in the Reference [10, 13, 22] for 

the synchronization control of nonlinear systems.  

 

 
Fig.10.  Transmitted and receiver signals using the classic PID 
controller and fractional Lorenz chaotic system. 

 

 

 
Fig.11.  Transmitted and receiver signals, using the FOPID 

controller and fractional Lorenz chaotic system. 
 

Table 1. Synchronization time and received signal time in 

this paper and references [10], [13] and [22]. 

 
 

 

Chaotic 

system 

Control 

Method 

Synchronization 

Time (sec) 

Recovered 

Signal (sec) 

The paper Fractional 

order 

Lorenz  

Fractional 

Order PID 

0.38 0.4 

Ref [10]** Sprott EP-Based 

PID 

~ 2 ~ 2 

Ref [13]** Gyros Self-learning 

PID 

~0.8 Not given 

Ref [22] Integer 

Order 

 

Extended 

Kalman 

Filter* 

<0.4 

>0.13 

0.43 

Ref [22] Fractional 

Order 

Lorenz 

Extended 

Kalman 

Filter* 

<0.72 

>0.4 

1.611 

* state estimation 

**The data have been approximately obtained from figures in the Ref [10] 

and [13] 

 

 

DISCUSSION AND CONCLUSIONS 
 

In this paper, an alternative control method for the 

synchronization of fractional Lorenz systems has been 

proposed. The FOPID control method has been applied to 

the chaotic communication system and the parameters of 

FOPID are determined using the FAPSO intelligent 

method.  

According to the obtained results, the FOPID control 

method has provided faster synchronization than the other
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PID method in the [10, 13]. It is also seen that the FOPID 

control method performs better than the methods in the 

literature. Effective data transfer has been obtained using 

the FOPID control method for the control of 

synchronization due to less data loss at the start compared 

with in other intelligence methods and other control 

methods [10, 22]. The parameters of FOPID are determined 

by FAPSO after quite a short time. Thanks to the optimized 

parameters of FOPID, the efficiency of the chaotic 

communication system is increased.  

In future work we intend to realize the chaotic secure 

communication system using fractional order multi-scroll 

chaotic systems and examine the noise performance of this 

method. 
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