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Abstract 

 
Power oscillations such as low frequency oscillations (LFO) are a common adverse experience in power systems which may result in 

instability problems and hence reduce the total and available transfer capability. It is well recognized that utilizing the flexible ac 
transmission systems (FACTS) technology yields different improvements in the power system such as better damping of electromechanical 
oscillations. This paper investigates the damping performance of the static synchronous series compensator (SSSC) equipped with a self-
tuning fuzzy logic damping controller (STFLDC). At the outset, a modified Heffron-Phillips model of a single machine infinite bus (SMIB) 
system integrated with SSSC is established. In the following, well performance of the fuzzy logic damping controller (FLDC) rather than the 
conventional classic one is scrutinized. To be tolerant with the operating points changing, another fuzzy logic controller (FLC) which acts as 
the tuning controller is supplemented in the control loop. The tuning controller is designed such that in the case of severe disturbances, it will 
tune the output scaling factor to result in a better damping performance. Simulation studies validate the effective performance of the 
developed STFLDC in damping electromechanical oscillations which results in a robust and reliable one. 

Keywords: Heffron-Phillips model, Low frequency oscillations (LFO), Self-tuning fuzzy logic damping controller, Single machine 
infinite bus (SMIB) power system, Static synchronous series compensator (SSSC). 
 

 

INTRODUCTION 

 
Todays, most of the power systems are operating near 

stability limits intended to supply increased electricity 
demand. On the other hand, interconnecting the large 
power systems have resulted in a more reliability and 
economical benefits. However, low frequency oscillations 
(LFO) with the frequencies in the range of 0.1 to 2 Hz are 
one of the direct results of the large interconnected power 
systems. These oscillations are frequent detrimental 
problems in large power systems since such oscillations 
often suffer from indigent damping [1]. These oscillations 
may come up to the overall rated capacity of a transmission 
line due to their superimposed effect on steady state flow a 
line. Hence, the oscillations would limit the total and 
available transfer capability by requiring higher safety 
margins. These electromechanical modes of oscillations are 
usually poorly damped which may increase the risk of 
instability of power system [1]. 

In the literature, different methods have been proposed 
to suppress the mentioned oscillations in the power system. 
Power system stabilizer (PSS) has been one of the 
traditionally devices used to damp out the oscillations [2]. 
During some operating conditions, PSS may not relieve the 
oscillations effectively and, hence, some other efficient 
alternatives are required besides the PSSs [3]. The 
introduction of flexible ac transmission system (FACTS) 
devices has initiated a new and more versatile approach to 
control the power system in a desired way [4]. FACTS 
controllers provide a set of interesting improvements 
including power flow control, reactive power 
compensation, voltage regulation, damping of oscillations, 

and so forth [5-12]. The static synchronous series 
compensator (SSSC) is a series FACTS device performing 
based on a solid-state voltage source converter (VSC) to 
produce a controllable ac voltage in quadrature with the 
line current [13]. By this way, the SSSC imitates as an 
inductive or capacitive reactance and hence controls the 
flow of the power in the transmission lines.  

In [14], author has developed the damping function for 
the SSSC. By properly designing a supplementary power 
oscillations damping (POD) controller, the SSSC would be 
capable of damping the fluctuations as an ancillary duty 
[14]. In the literature, different methods have been 
proposed to design a POD controller for SSSC. For 
example, in [14] authors have used the phase compensation 
method to develop a supplementary damping controller for 
SSSC. The chief problem associated with the mentioned 
methods relates to its control process which depends on the 
linearized model. The other frequently used approach is the 
proportional-integral (PI) controller. Although the PI 
controllers offer simplicity with an easy design, their 
functionality depreciates when wide variations occur in 
system conditions or large disturbances happen [15].  

In this area, new effective solutions are proposed. In 
recent years, fuzzy logic controllers (FLCs) are coming as 
an impressive tool to circumvent these drawbacks. The 
FLC integrates qualitative and quantitative information 
regarding the system operation by some hierarchy. To be 
more precise, fuzzy logic yields a comprehensive concept 
to describe and measurement of the systems. The fuzzy 
logic systems interpret human understanding to a program 
in order to arrive at decisions or to better control of the 
system [16,17]. Fuzzy logic includes fuzzy sets to represent 
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non-statistical uncertainty in processes [18]. There are 
some manuscripts which have demonstrated the successful 
application of FLC for transient stability enhancement of a 
power system. In [19], Limyingcharone et al. have used a 
fuzzy supplementary controller with the aim of achieving 
low frequency oscillations damping.  

The main contribution of this research is to design a 
supplementary self-tuning FLDC (STFLDC) to attenuate 
the power oscillations by SSSC. The investigation is carried 
out for a power system including a single machine with an 
infinite bus (SMIB) integrated with a SSSC. In the sequel, 
the linearized Heffron-Phillips model [20] of the examined 
plant is evolved. An auxiliary FLC is utilized to modulate 
the amplitude modulation index during the transients to 
extend the stability capability of the system. Subsequently, 
aiming to provide a fruitful investigation, a comparative 
study is developed where the FLC is compared with a 
conventional classic controller. To provide a robust and 
reliable controller, another FLC is designed as the tuning 
controller. It is shown that the performance of STFLDC is 
more efficient than all and hence would be a good option 
for system designs and covers more range of operating 
points. Simulation results using MATLAB/Simulink 
exhibits the superior damping of STFLDC.  

 
Power System Modeling 
This section is dedicated to extract an exact linearized 

Heffron-Phillips model for the investigated power system. 
As depicted in Figure 1, the SMIB integrated with SSSC is 
selected as the testbed. Here, XT is the transformer 
reactance and XL corresponds to transmission line 
reactance. Also, Vt and Vb represent the voltages for 
generator terminal and infinite bus. A simple SSSC 
consisting of a three-phase VSC is incorporated in the 
transmission line. The SSSC performance is organized on 
the well-known pulse width modulation technique. For the 
SSSC, XSCT is the transformer leakage reactance; VINV is 
the series injected voltage; CDC is the DC link capacitor; 
VDC is the voltage at DC link; m represents amplitude 

modulation index andψ is the phase angle of the series 
injected voltage. 
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Figure 1. A single machine infinite bus power system with a SSSC 

 

Nonlinear Dynamic Model Of The Power System With 

SSSC  
As the first step, a nonlinear model for the examined 

system is extracted where the resistance of the total 
ingredients of the testbed have been neglected. The 
equations specifying the dynamic performance of the SSSC 
can be written as follows [14].  

d qI I jI I      1 
(cos sin )INV DC DCV mkV j mkV        

90     

( cos sin )DC
d q

DC

dV mk
I I

dt C
       (1)  

 
Where k is the fixed ratio between the converter AC 

and DC voltages that depends on the structure of the 

inverter. For a simple three-phase VSC, k is equal with
4

3  

[4]. Most of the times, SSSC performs as a pure capacitor 
or inductor; hence, the only main controllable parameter for 
SSSC is the amplitude modulation indexm. 

For the work at hand, the IEEE Type-ST1A excitation 
system is considered. Figure 2 displays the block diagram 
of the excitation system where the terminal voltage Vt and 
the reference voltage Vref are the input signals. KA is the 
gain and TA is the time constant for the excitation system. 
The dynamic model of the power system in Figure 1 would 
be as follows [21]. 
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Figure 2. IEEE Type-ST1A excitation system 
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 (6) 
where   
δ   : Rotor angle of synchronous machine in radians 
ω   : Rotor speed in rad/sec 

mP : Mechanical power input to the generator 

eP  : Electrical power of the generator 
( 1)DP D   , D: Damping coefficient  

qE′
  : Generator internal voltage 

fdE
: Generator field voltage 

dI  : d-axis current 
qI   : q-axis current 
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Linear Dynamic Model Of The Power System With  

SSSC 

 The linear Heffron-Philips model for the SMIB system 
integrated with SSSC is extracted by linearizing the 
nonlinear model for a nominal operating point [14]. 
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mKVKqEKKV DCmDC987DC  

(11) 
Where 

mKVKqEKKP pmDCpDC21e  

(12) 
mKVKqEKKE qmDCqDCq  34 

(13) 
mKVKqEKKV vmDCvDC65t  

(14) 
 

Figure 3 exhibits the transfer function representation 
for the modified Heffron-Phillips model of the SMIB 
system with SSSC. 

 
State Space Representation of Linear Model 

The state-space representation for the modified 
Heffron-Phillips model:  

 
BUAXX   (15) 

Where X  and U are defined as the state vector and  
control vector respectively.  

T
DCfd ]VEqE[X  

    (16) 
]m[U   (17) 

 
With respect to (7)-(15), the corresponding system 

matrix namely A, and the control matrix namely B, are 
obtained for the investigated power system. 
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The nominal operating point for the power system is set 

to the given values. 
,pu8.0Pe  ,pu144.0Qe  pu1Vb   

 
The Heffron-Phillips model constants are calculated 

based on the given values for the nominal operating point 
and some other data which are reported in the Appendix A. 
Also the parameters of SSSC are given in the Appendix B. 
Eventually; Appendix C gathers all of the constants 
computed for the system model depicted in Figure 3. 
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Figure 3. Heffron-Phillips model of SMIB system integrated with SSSC 
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Design of Damping Controller and Performance 

Analysis 
Aiming to damp the low frequency oscillations, two 

sorts of damping controllers are designed and compared 
with each other. In the investigated system, as mentioned 
earlier, the SSSC series converter amplitude modulation 
index namely m, provides a control signal to yield better 
damping of oscillations. In the subsequent sections, each 
controller is individually discussed in detail.  

 

Classic Damping Controller (CDC) 
A step change is considered as the contingency in 

mechanical power ( 01.0PΔ m = ) which occurs at 
t=5sec and lasts for 0.1 sec. At the beginning, the SSSC has 
no damping controller. The angular velocity deviation and 
also the load angle deviation responses are displayed in 
Figure 4 (a) and (b) respectively. This figure reveals that 
when the system has no damping controller, there is a very 
poor damping in LFO; hence an auxiliary damping 
controller is essentially required to improve the transient 
stability of the system.  
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Figure 4 (a) and (b).LFO damping performance with no damping 
controller 

 
In this subsection a classic damping controller (CDC) is 

designed and added to the main control loop of the SSSC. 
Figure 5 displays the CDC structure. It is composed of a 
gain block, a washout filter and a lead-lag 

compensator. ωΔ  denotes the angular velocity deviation 
which is adopted as the feedback input signal where as 
other measurable signals, such as frequency, line real 
power, etc have been selected by the other literatures [11]. 

 
 

The gain setting of the damping controller is adjusted 
so as to attain the desired damping ratio of the oscillations. 
Washout circuit is utilized to block the auxiliary controller 
not to respond to the steady-state power conditions. The 
parameters of the lead-lag compensator are such tuned that 
the phase shift between the speed deviation and the 
resulting electrical torque is compensated. By this way, an 
additional electrical damping torque in phase with the 
speed deviation is achieved. In the testbed, simulation 
studies are used to settle the initial parameter settings for 
the controller by a trial-error method. The detailed data for 
classic damping controller is presented in Appendix A. 
Figure 6 demonstrates that by considering the classic 
damping controller, the oscillations are more effectively 
damped. The operation of this controller mainly depends on 
the operating point. For the changing operating conditions, 
this classic controller will not be as effective as for its 
initial operating point. 
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 Figure 5. Auxiliary classic damping controller 
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Figure 6. CDC performance in Low frequency oscillations 
damping 

 
 Auxiliary Fuzzy Logic Damping Controller (FLDC) 
 As explained in the preceding sections, although the 

classic controllers offer simplicity with an easy design, 
their performance depreciates when vide variations occur in 
the system conditions or large disturbances happen. 
Consequently, to ensure the effective performance of 
damping controller over wide range of system operations 
and also to increase the transient stability of the system, a 
supplementary fuzzy logic controller (FLC) based on the 
Mamdani's fuzzy inference method is designed for the 
SSSC input. FLC generates the required small change for 
amplitude modulation index to control the magnitude of the 
injected voltage. The centroid defuzzyfication technique 
was used in this fuzzy controller. 

Figure 7 demonstrates the FLC structure. In this case, a 
two–input, one–output FLC is considered. The input signals 
are angular velocity deviation ( ωΔ ) and load angle 
deviation ( δΔ ) and the resultant output signal is the 
amplitude modulation index ( mΔ ) for SSSC converter.
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K1 and K2 are the input scaling factors to scale the input 
signals in the range of [-1,1]; and Ko is the output scaling 
factor to scale the output to the real values. The presented 
FLC has a very simple structure. The membership functions 
of the input and output signals are shown in Figure 8 (a), 
(b) and (c) respectively. There are two linguistic variable 
for each input variable, including, “Positive” (P), and 
“Negative” (N). On the other hand, for the output variable 
there are three linguistic variables, namely, “Positive” (P), 
“Zero” (Z), and “Negative” (N). The rules used for the FLC 
are chosen as follows: 

 
If  is P and   is P, then m  is P. 1 
If   is P and   is N, then m  is Z. 2 
If   is N and   is P, then m  is Z. 3 
If   is N and   is N, then m  is N. 4 
 
Figure 9 demonstrates the performance of the FLDC in 

damping of oscillations. As it is seen, the FLDC performs 
better than the CDC in low frequency oscillations damping. 
Simulation results validate the efficiency of the proposed 
FLDC and its better performance is emphasized. 

The FLDC demonstrates a good performance when the 
operating conditions are similar to the conditions 
considered for designing the controller. In the other 
operating conditions, the designed controller would not be 
capable of settling down the oscillations. Therefore, this 
controller should be capable of tuning itself during its 
operation. In this regard, another FLC is suitably added to 
the FLDC which tunes the output gain by the coefficient α. 
Figure 10 shows the structure of this controller. To design 
the tuning controller, some severe cases are considered. By 
simulation studying of these cases, it is distinguished that in 
the worst cases, if α is equal with the end threshold of 1.5, 
the total controller will demonstrate a satisfactory response. 
Hence, α is set to vary in the following range, namely 

5.1α1 ≤≤ . The membership functions for the inputs are 
the same as before except a Zero (Z) membership function 
added. For the output, the membership functions are 
depicted in Figure 11. These membership functions are 
marked with the respective linguistic labels, S (Small), M 
(Medium), and B (Big). The rules with two proposed 
inputs, ωΔ  and δΔ , are listed in the Table 1. Also Figure 
12 shows the control surface for the tuning controller. 
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Figure 12. The rule surface for tuning controller 

 
Performance of STFLDC in low frequency oscillations 

is shown in Figure 13 where the best damping performance 
is deduced for this controller among the previously 
examined. STFLDC provides more reliability and covers a 
wide range of operating points. Also Figure 14 
demonstrates the desired pole shifting achieved with 
STFLDC in comparison of the power system without 
damping controller. 
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Figure 13. Performance of STFLDC in low frequency oscillations 
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Figure 14. Performance of STFLDC in system pole shifting 
 
CONCLUSION 
 

This manuscript serves an exact investigation to obtain 
a complete linearized Heffron-Phillips model SMIB power 
system equipped with an SSSC to study LFO damping with 
an auxiliary FLC. It was shown that a contingency in power 
system will cause to initiate power oscillations. In the 
sequel, two types of controllers, namely, the CDC and the 
FLC were designed to damp the system oscillations. A 
comparative study between the FLDC and CDC shows that 
the proposed FLDC has superior performance and 
influence in transient stability enhancement and oscillations 
damping. Aiming to achieve a robust damping controller 
which covers wide operating points, a tuning FLC is added 
to the control loop of the FLDC and constructs the 
STFLDC. The tuning controller tunes the output of the 
FLDC and makes it a self tuning controller in response to 
changes of operating point. Simulation results validate the 
efficiency of the proposed STFLDC and its better 
performance in damping the low frequency oscillations 
among the studied controllers is emphasized. 

 
Appendix A 

Power System Parameter 

Generator: 

M=2H=6 MJ/MVA, D=0 
T'do=5.044 s 
Xd=0.1 pu, Xq=0.06 pu, X'd=0.025 pu 
f0=60 Hz, ω0=2πf0 
Excitation System: 
KA=5, TA=0.005 s 
Transmission Line and Transformer Reactances: 
XLine=0.2 pu, Xts=0.2 pu 
 
Appendix B 

SSSC Parameters 

CDC=1 pu; VDC=0.5 pu; m=0.15; XSCT=0.1 pu  
 

Appendix C 

Heffron-Phillips Model Constants 

K1=1.9014;    K2=0.6735;     K3=1. 1429  
K4=0.0498;    K5=-0.0127;   K6=0. 9517  
K7=-0.1759;   K8=0.0302;    K9= 1.402×10-4  
KDCm=-0.4255;   KpDC=0.0244;  KqDC=0.0106;   KvDC= -
0.0035 
Kpm=0.0839; Kqm=0.0354; Kvm=-0.008 
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