
*Corresponding Author
e-mail: p_asadi@iauvaramin.ac.ir

 Received : August 08, 2010
 Accepted : December 15, 2010

A New High-Speed Multiplier Using Modified Partial Product Reduction Algorithm

P. ASADEE*
Islamic Azad University, Varamin branch, IRAN

Abstract
In This paper a new high-speed multiplier using modified partial product reduction algorithm with Wallace method is proposed. Three important

modifications are done for multiplier in this study. In partial product generation step of multiplication a new Booth algorithm is proposed which
decreases number of partial products quarterly. In partial product reduction method a modified Wallace algorithm is presented that sums partial
products very fast and is more regular than previous works. In final addition step a novel final adder are presented that sums two final operands
efficiently. Simulations are done using HSPICE in 80 nm CMOS technology. Presented multiplier decreases number of transistors more than 14
percent, power consumption reduction is 16 percent and area reduction is 8 percent in compare with previous works.

Keywords: adder, Booth, CMOS, VLSI, Wallace

INTRODUCTION

Multiplier is one of the important operators in
arithmetic processors and DSP applications. Therefore
there are growing requests for high-performance
multipliers in different structures of new computer
architectures, like scientific computation, multimedia
systems and so on. Much research has been done
until now, analyzing different high-speed multiplier
structures. Because its speed often decides how quickly
the processors can operate. The increasing expansion of
electronic systems in recent years has done new problems
to the integrated circuit engineers. When designers
use more and more capabilities with lot of real-time
calculation, while performing at the high speeds, there are
needs major changes at all stages of IC implementation.
Improved calculating power has capable us to expand
complicated structures and perform high-performance
procedures. It also consequences in a need to grow
processing component even more to do these functions
more powerfully. As a result, studies have always been
done to achieve more high-speed calculation hardware.
This requests the improvement of high-speed arithmetic
operators, such as adders, dividers, multipliers, etc.

The fast changes of mobile electronic equipments
with bounded power and layout has developed a variety
of low-power consumption and high-speed gate design
requests and has major effect in IC structures [1]. Mobile
systems and laptops are two types of mobile electronic

systems that are used much more than before. Newly,
the power of integrated circuits has obtained much
consideration because of the propagation of high-speed,
mobile, low-power electronic systems [2]. Multiplier
is an important basic operator in arithmetic processors.
Because, multiplication are used in most processor
algorithms; therefore, high-performance multiplier is
much requested. Multiplication delay has an important
role in deciding the instruction period of arithmetic
algorithms. With a substantial growing need for greater
calculating power on portable systems, design parameters
have moved from decreasing delay time and layout size
to minimizing power consumption while still obtaining
the high efficiency. The three important parameters for
IC implementation are power consumption, layout and
delay. There are many presented logic methods for low-
power consumption and high speed and each method
has its importance in expression of more speed and less
power. Pass-transistor technology is proposed as one of
the ways that can impact on circuit efficiency [2].

In section two, a new modified Booth algorithm is
presented which decreases number of partial products
efficiently. In section three a novel full adder is proposed
which has better electronic parameters than previous
works. In section four a four to two counter is designed.
In section five, overall multiplier is shown. In section
six a carry lookahead adder with modified structure is
proposed. Simulations are done in section seven.

Internatıonal Journal of Natural and Engineering Sciences 5 (1): 53-58, 2011
ISSN: 1307-1149, E-ISSN: 2146-0086, www.nobel.gen.tr

5454 P. Asadee / IJNES, 5 (1): 53-58, 2011

Modified Booth Algorithm
In this section a new modified Booth algorithm is

presented. The modified Booth’s encoding based on a
high-radix, is the most used way for designing high-speed
multipliers with various encoding [3]. It has a digit set
{0,±1,±2} to decrease the amount of the partial products

to 3[]
2

nn +
= . The high-radix Booth method is based on a

parallel encoding to decrease this number to
2[]

3
nn +

= .
All digit encoding {0,±1,±2,±3} are performed by simple
moving and inverted operations, except production of
the multiple 2X (referred to as complex multiple), which
is calculated by an summing and moving operation,
4X=2X+2X; -2X can be produced by invert 2X. Some
arithmetic processors have used the Booth-4 method to
decrease the adder tree of partial products and to raise
the speed of the multiplier. Other designs [4] are used
Booth-6 multiplication to decrease the layout, power and
delay [3]. The structure of modified Booth encoding is
shown in Fig. 1.

It uses a collection of carry skip adders with no
carry chain and one two’s complement number must
be summed. However, an implementation trade-off
must be performed. High-radix method based on two’s
complement logic to remove the 4X calculating is
proposed in [5], while limitations such as speed or layout
are not synthesized. In other Booth structures, as explained
in the implementation of arithmetic processors, the 4X
is pre-calculated the crucial path, concluding in a high-
speed and low power consumption multiplier. We explain

N bit numbers A and B by expressions 1 2 0...N Na a a− − and

1 2 0...N Nb b b− − correspondingly. The produce of the two
numbers can be expressed as

 (1)
In a basic parallel multiplication process of two

Q bit numbers, all the Q partial products are produced
concurrently and the summation operation between
them is performed by an array of Q*(Q+1) counters.
The multiplication speed is stated by the latency time
related with the counters. For the mentioned multiplier,
the latency is 2N+1 counter delay since the critical carry
propagate that spreads in the array is through the left and
top borders of the adder tree [6]. The conventional Booth
algorithm permits the multiplication algorithm to hop over
any adjacent sequence of zeros and ones in the operator,
before use a partial product for every bit. Hopping over
a sequence of zeros is simple, but in hopping over a
sequence of ones, the following principle is performed;
a sequence of ones can be calculated by take away the
weight of the leftmost one from the operand.

At last, NEG produces a 0 or a 1 relating upon whether
the MUX produces a positive or a negative bit. Subtraction
can be done using two’s complement summation. This
includes sum one to the negative of the multiplicand at
the least significant bit for ADD and 2ADD procedures.
The additional one is produced by the algorithm. Fig. 1
presents the method for two’s complement Booth encoding
multiplication. Each MUX is eight bits; six bits are for
the multiplicand and two additional bits at the MSB are
for the sign of the multiplicand and to perform the right-
move procedures add and sub functions are used. Booth’s
encoding can in addition be used to perform negative
binary illustrations by using a redundant number system
[4]. Redundant number systems permit both positive and
negative bits within the number. The main thought behind
Booth’s encoding is to remove long sequence of one’s by
modifying the bit illustration.

Sign expansion is presented in Fig. 1 by two values
PY and RY where Y shows the row in the partial product
table. The sign expansion is handled by Y which shows
whether the generated Booth value is sign extended. Each
Y expression is then summed to the section in the last
location for suitable two’s complement encoding. It is
important to recognize that sign expansion can solve out
the bits in the partial product table when the multiplicand
is positive and the multiplier chooses a positive value.
As a result, a EX-OR gate between the leftmost bit of the
multiplicand and the high significant bit for the partial
product generated bits in the multiplier produces the one
to remove the encoded ones accurately as showed Fig. 1.
In addition, because the LSB of the input partial products
is the encoded bit, modified Booth multipliers decreases
the amount of partial products to n/3.

Fig 1. Modified Booth encoding

Proposed Full Adder
In this section a new full adder is proposed. The full

adder is the basic gate in many arithmetic operators, such
as multipliers. Because these algorithms have major affect
the general speed performance in VLSI designs [2], their
efficiency modification is critical in high-performance
systems, and special applications usually need a trade-off
between power and delay [1]. Additionally, as arithmetic
operators have considerable effect to the whole power
consumption, their power decrease becomes an important
aim to design low-power chips used in mobile electronic

55P. Asadee / IJNES, 5 (1): 53-58, 2011

devices. Fig. 2 shows efficient proposed full adder using
transmission gates.

Recently many algorithms both with and without
driving capacity have been implemented to design full
adders. In full adders with dynamic capability, inputs
and outputs are buffered because the way between them
contains the gate input of one or more components, as
the conventional CMOS full adder. In full adders without
pass-transistors, inputs and outputs are not buffered, as
in design with domino-CMOS and transmission gates
which do not use inverters between the input and output
elements. Considering the full adder designs with pass-
transistors, the domino CMOS are used in blocks of Fig.
3 which has confirmed to be the most high-speed but has
high energy consumption.

Fig. 2 presents a full adder module as a carry save
summation that is usually used in IC implementation. It
has three inputs and two outputs. The three inputs have
an equivalent weight and the output 2 bits are a carry
signal and a save signal, accordingly. This is the binary
illustration of input addition. Carry chain bit (pi) and
carry produce bit (gi) can be described as Xi + Yi and
Xi Yi accordingly. So, when a sequence of adders is used
concurrently, three bits (xi , yi and ci) can be decreased
to two digits (Si , Ci+1) which is a carry digit and a sum
digit.

Easiest way of power decrease is to apply three-input
NAND gate base on the sum and carry expression that is a
sequence for the carry skip adder. In addition, the amount
of power decrease is important because it calculates the
delay of the whole power consumption decrease stages.
Also, the amount of power decrease decides the needed
number of fundamental modules of full adders in the
whole power decrease stage while implementing the low
power adder with multi stage power decrease way.

High efficiency implementation with high-speed
adders is one of the most conventional applications
performed in arithmetic processors and image processing
systems. Due to its high delay and the needed large power
consumption, we used a new synthesis and verification
way, multi stage power decrease method, for this
component implementation. This is one of the critical
methods that estimate system performance.

Some preceding known full adder designs are
presented [2]. The performance of these preceding
implementations and the presented full adder module
has been synthesized. Component simulation was done
with HSPICE using 80 nm CMOS technology for
supply voltages form 1.2 to 2.4 V. Input bits were used
through buffers (Wp=90 nm, Wn=85nm) and the output
signals were derived by output of three domino CMOS
inverter gates. Calculated interconnect wiring were used
to implementing circuit outputs for the simulations. The
power, latency and power-latency product are obtained by
simulation for power supply from 1.2 to 2.4 V for three
different implementations. The presented 14-transistor
adder cell is the most power efficient among all these full
adder modules [3]. It has the least power consumption
and chain delay. While the 10-transistor full adder does
not performed reliably at a low power supply (Vdd=1~1.5
V), the presented 14-transistor full adder performs
appropriately at a low power supply.

Proposed Compressor
A new four to two compressor is proposed. The

presented four to two counter called static CMOS four
to two counter is described in the following. It is base in
dynamic CMOS logic [6]. In this section the XNOR logic
is performed. It has no through path to ground therefore
decreases the power. Here the load saved at component is
used for the control logics. The mixture of not having a
shortest path to ground and re-use of the load capacitance
to the control logic does the energy improving full
adder effective and this can be designed only using 18
transistors.

A conventional way as applied in [5] has been
performed. Here four input expressions C1,C2,C3 and C4
obtained from inputs I1,I2,I3 and I4 as described before. Each
expression is tested 4 times using different technologies.
All input bits have an increase node and a fall node of 400
ps. So, for each logic 15 HSPICE synthesize are done and
in each circuit the rise time latency and fall time latency
for sum are wrote down and the maximum latency and
maximum energy consumption is shown for the circuits
in the same method as is performed in [2]. Every time
the area is measured and the simulation calculations are
computed with number of transistors and power latency
product. With computing of area the latency, power and
power latency product are mapped.

Multiplier Design
The multiplier runs the R=P*Q+L expression, where

P is the m-bit multiplier, Q is the n-bit multiplicand, and
C is the y-bit computed number which is saved once in
the register and then returned (y>m+n). Fig. 3 shows
partial product reduction tree presented in this study.
Conventionally, the multiplier is made of the reduction
tree and the final adder. When a high-speed operator is
needed, a CMOS buffer is substituted between two steps.
In this architecture, the latency of the entire system is
affected by the latency of the multiplier.

Fig 2. Modified full adder

5656 P. Asadee / IJNES, 5 (1): 53-58, 2011

It has been analyzed a problem in which multiplicand
Q, which is used by the modified Booth encoding, is
sign-extended to 2m bits (m is a number of not less than
one). The 2m bits resulted by the sign extension are a
string of 0 when the weight is negative and are a string
of 1 when positive. As a result, the partial products of
the sign-extension slice are all 0, independent of whether
operand Q is positive or negative. By using the above
specifications, it can be determined that the output of the
multiplier is sign-extended to (q+r+1) bits by summing 0s
to all bits after the sign bit of the top stage partial product.
Multiplication formula is modified in Eq. (2)

The presented EXOR-NAND multipliers use five skip

full adders, and the three new four to two counters, to allow
the use of the 6-transisotor EXOR gates in producing the
partial product bits, as a replacement for the 5-transistor
AND and OR gates. The aim is the decrease of both the
amount of transistors and the power consumption of the
high-speed multipliers.

Previous partial product bits production, of two’s

complement tree multipliers, has 2(1) 3n + + AND
gates and 2(n+1) NAND gates [4]. The presented tree
multiplier needs 2(3)n + NAND gates and only two
AND gate to produce the partial product bits. The
concurrent use if NAND gates, in place of AND gates,
concludes in decreasing the amount of transistors by
[3(n+1)-3] and results a shorter time latency and a lower
power consumption are needed. The carry skip adder
implementation was made of the presented kind four
adders [2]. This is in reason of that two computed rows
are complemented and type two adders use all of this
four signals complemented while the non-complemented
Q output (Fig. 2) results the correct final product. This
is like to the use of kind two skip adders as carry chain
adder in the conventional array multiplier.

When implementing a multiplier, a regular layout
is very important. The layout regularity will not be
significantly changed by using four various adders since a
multiplier with a large operands includes mostly of three
to two counters. In addition, the dynamic adder modules
use the equal number of transistors and have same amount
of inputs and outputs. As a result, they all have layouts of

Fig 3. Proposed partial product reduction tree

Fig 4. Presented multiplier architecture

(2)

57P. Asadee / IJNES, 5 (1): 53-58, 2011

Fig 5. Proposed carry lookahead adder structure
Fig 6. Presented multiplier a) layout b) simulation results

about the same size. One important factor affecting layout
is the structure of input and outputs of each module to
make the way among near modules very simple. Fig. 4
shows presented multiplier structure. The second step of
the multiplier is a partial product reduction algorithm,
using counters. Four to two counters are analyzed in
this study because they use two steps of gates and their
parallel structure is like to two chained adders. Some
counter circuits in low power circuit implementations use
several simpler gates. However only three components
are applied in this design, the gate paralleled structure
needs four buffers. Since, counter circuit design without
chaining gates is also used.

For a counter implementation that does not use chain
logic circuits, the gate paralleled structure of a partial
product reduction tree is used by summing a buffer at
every counter output and by using of a number of latency
optimized buffers. Wallace tree bit part decreasing the
amount of partial products from 16 to 3, is presented.
It uses 10 full adders and has 8 parallel steps. It also
includes a total of 18 buffers, 7 of them are the latency
optimized buffers. Since, a Wallace tree with the gate
parallel structure of the counter presented includes 55
buffers and performs in 12 parallel steps.

Carry Lookahead Adder
The simplest adder structure is the carry-chain, which

is shown in Fig. 5. Modules M0 and M1 are counters.
Each counter calculates a sum and carry that produces
twoaddends and a carry-in as follows:

 (3)

Simulations are done using HSPICE in 80 nm CMOS

technology. The presented partial product algorithm uses
a new high-radix method for partial product generation
step. Presented encoding method has benefits like new
carry-skip algorithm proposed in this study, which
improves prefix operation in the new encoding. An
appropriate benefit when compared to other partial
product generation implementations is that our algorithm
does not need any additional hardware for changing
produced partial products to high-radix structure. This
structure also removes the need for a generating word
like the one used in previous algorithms [5].

The comparison of different partial product
generation modules for a 32*32 and 48*48-bit multiplier
is synthesized. Our partial product generation method
obtains the highest amount of regularity among other
multipliers. The results about the amount of partial
products for 64 bit multipliers was obtained from the
previous articles [4], however the computation on the
amount of partial products for the 64 bit multiplier was
perform in this study. It may be important that in the case
of 54 bit multipliers all the previous multiplier algorithms
increased the optimum number of partial products (24)
for a 3-step partial product generator. However, for the
implementation of 54 bit multipliers using previous
designs, an additional adder step will have to be included
in the partial product reduction, concluding in a expected
increase in multiplier latency. Presented multiplier layout
and its simulations are shown in Fig. 6. Table I shows
comparison between 32*32-bit multipliers.

(b)

(a)

5858 P. Asadee / IJNES, 5 (1): 53-58, 2011

REFERENCES

[1] O.T.C. Chen, S. Wang and Y.W. Wu, “Minimization
of switching activities of partial products
for designing low-power multipliers”, IEEE
Transactions on VLSI systems, vol. 11, issue 3, pp.
418-433, 2003.

[2] K.S. Chong, B.H. Gwee and J.S. Chang, “Low
energy 16-bit Booth leapfrog array multiplier using
dynamic adders”, IET circuits, devices & systems,
vol. 1, issue 2, pp. 170-174, 2007.

[3] L.D. Van and C.C. Yang, “Generalized low-error
area-efficient fixed-width multipliers”, IEEE
Transactions on circuits and systems I, vol. 52,
issue 8, pp. 1608-1619, 2005.

[4] Z. Huang and M.D. Ercegovac, “High-performance
low-power left-to-right array multiplier design”,
IEEE transactions on computers, vol. 54, issue 3,
pp. 272-283, 2005.

[5] J.H. Tu and L.D. Van, “Power-efficient pipelined
reconfigurable fixed-width Baugh-Wooley
multipliers”, IEEE transactions on computers, vol.
58, issue 10, pp. 1346-1355.

[6] L. Sousa and R. Chaves, “A universal architecture
for designing efficient modulo 2 1n + multipliers”,
IEEE transactions on circuits and systems I, vol. 52,
issue 6, pp. 1166-1178, 2005.

CONCLUSIONS

In this paper a new high speed multiplier is presented.
A multiplier algorithm consists of three Parts. These
three parts are partial product generation, partial product
reduction and final addition. In partial product generation
step, a new Booth encoding are presented that reduces
number of partial products efficiently. In partial product
reduction step a novel Wallace tree is proposed which is
much more regular than previous designs. In final addition
step of algorithm a carry lookahead adder are presented
that sums two final operands in a fast way. Simulations
are done using HSPICE in 80 nm CMOS technology.
Presented multiplier decreases number of transistors
more than 14 percent, power consumption reduction is 16
percent and area reduction is 8 percent in compare with
previous works [2,6].

