
 

 

       
 

 
 
 
 

  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INTRODUCTION 

Appropriate and exact load forecasting can properly prepare 
the reserve capacity; in fact, unnecessary reservations lead to 
reduction of power loss. Load forecasting is however an 
elaborated task for the following major reasons. First, because 
the load-series is complex and exhibits several levels of 
seasonality. Second, the period at a given hour or time period is 
dependent not only on the load at the previous period, but also is 
temperature-dependent [1]. 

Based on length of time, load forecasting can be divided into 
four major categories: Long-Term Load Forecasting (LTLF), 
Midterm Load Forecasting (MTLF), Short Term Load 
Forecasting (STLF) and Very Short Term Load Forecasting 
(VSTLF). Long-term forecasts during the period of a year or 
more, it is necessary for generation or power plant planning in 
the future, while MTLF for a few days or few weeks or months; 
it is important for fuel reserve planning or unit commitment. 
STLF having period time in a minute to three days; it is vital for 
unit commitment and operation, ultimately VSTLF having period 
time in a minute and is of great importance for real time 
operation. 

The past works in literature have been classified based on 
problem solution techniques. For this, three categories are 
presented; i.e. neural networks (NNs) and non-NNs as well as 
hybrid approaches.  

Different branches of NNs have been suggested for load 
forecasting [2-6]. Chen et al. have proposed a daily-based 
wavelet NN method for holiday STLF [2]. In [3], authors have 
proposed a novel method to forecast the use of regressive and 
artificial NN (ANN) models with the case study carried out on a 
given Turkish network. In this research, two methods are 
separately performed and then compared. It reveals that both 
methods result in high accurate results.  

 

Authors in [4] have employed time lagged feed forward 
network made load forecasting in short time which combines 
conventional network topology good handling of time 
dependencies by means of gamma memory. The proposed 
technique in [5] has been organized in two parts; first, section 
which is based on NN and self-organizing feature maps has been 
used to identify those days with similar hourly load patterns, in 
second section feed-forward multilayer NN is designed to predict 
daily peak load and light load. Authors in [6] have suggested a 
novel hierarchical hybrid neural model for long term load 
forecasting.  

Researchers have developed several techniques for load 
forecasting [7-10]. The proposed approach in [7] for STLF 
consists of two stages based on time-series methods. Authors 
have claimed that proposed technique can be used to support 
vector machine (SVM) according to the characteristic of 
historical data. Elattar et al in [8] have modified support vector 
regression (SVR) by combining the SVR and locally weighted 
regression (LWR), also they employed the weighted distance 
algorithm. The used approaches for STLF by Taylor and 
McSharry are: ARIMA modeling, periodic AR modeling, an 
extension for double seasonality of Holt-Winters exponential 
smoothing alternative exponential smoothing formulation and a 
method based on the principal component analysis (PCA)[9]. In 
[10], Chaotic Particle Swarm Optimization (CPSO) algorithm 
has been employed to choose the suitable parameter combination 
for a SVR model as model of electric load forecasting.  

Authors have combined different techniques and presented 
hybrid approaches to obtain better solution for load forecasting 
[11-15]. The proposed hybrid approach in [11] consists of two 
sections: wavelet fuzzy neural network (WFNN) and fuzzy 
neural network Inference (FNCI) which was used the fuzzified 
wavelet features as the inputs to fuzzy neural networks (FNN) 

Internatıonal Journal of Natural and Engineering Sciences 7 (1): 01-05, 2013 
ISSN: 1307-1149, E-ISSN: 2146-0086, www.nobel.gen.tr 
 

Short-Term and Mid -Term Load Forecasting Using Multi Layer Perceptron’s and Radial 
basic Function 
  
Mohammad KARIMI1,∗      Mahdi NOOSHYAR2      Saadat AMIRI3      Masood NAJAFZADEH3       Payam FARHADI1 

1Young Researchers Club, Parsabad Moghan Branch, Islamic Azad University, Parabad Moghan, Iran 
2Technical Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran 
3 Department of Electrical Engineering, Science and Research Branch Islamic Azad University, Ardabil, Iran 
 

 

*Corresponding author:                      Received: June 01, 2012 

E-mail: m.karimi@iaupmogan.ac.ir      Accepted: July 09, 2012 

 
 Abstract  

  Load forecasting plays an important role in power systems supply-demand action. For power companies, load forecasting is vital since this 
forecasting is a base for planning of future development, the economic dispatch, determining the security and control systems and effective operation 
(investment and decisions for electric generating company) in power systems. In this paper, two Neural Networks (NNs); i.e. Multi Layer 
Perceptron’s (MLP) and Radial Basic Function (RBF) are proposed for short and mid terms load forecasting. The data of Azarbayjan Electrical 
Network in West-North of Iran has employed for training of these NNs. Four statistical indices used to analyze obtained results and compare abilities 
of MLP and RBF, these indices are: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage 
Error (SMAPE) and Relative Error Percentage (REP). 

Keywords: Mid Term Load Forecasting, Neural Networks, Short Term Load Forecasting, Realistic Power Network. 



 
 

                     M. Karimi et al / IJNES, 7 (1): 01-05, 2013                           2 
 

 

and the Choquet integral as the outputs of FNN. In [12], fuzzy 
Inductive Reasoning (FIR) has been applied to the STLF 
problem and simulated rebounding algorithm has been used to 
choose the inputs of the FIR model. Pandey et al., suggested a 
wavelet decomposition approach with various conventional 
statistical and NNs as well as fuzzy inference based hybrid 
approaches has for STLF [13]. 

The proposed hybrid model in [14] for STLF has two stages: 
first, NNs are trained by the load patterns, then the fuzzy expert 
systems modify the provisional forecasted load considering the 
possibility of load variation due to changes in temperature and 
the load behavior of holiday.  

Finally, in [15], a novel hybrid method based on a Self-
Organizing Fuzzy NN (SOFNN) learning method with a bi-level 
optimization method has been proposed for STLF. In forecasting 
process, SOFNN and bi-level optimization methods are used to 
determine model structure and parameters and select the best 
pre-training parameters to ensure that the best fuzzy neural 
networks are identified, respectively. 

This paper develops a comparison between two powerful 
branches of NNs for short and mid terms load forecasting. For 
this, Multi layer Perceptron’s (MLP) and Radial Basic Function 
(RBF) has been used to forecast. This paper's contributions are as 
follows: 

In contrary to the many conventional works which only 
review the past completed work, in this paper, authors have 
classified past works in several groups. 

Two reliable NNs were suggested to solve load forecasting 
problem. Also, two terms have been considered for load 
forecasting; i.e. short and mid terms. 

Four valid statistical indices have been introduced to judge 
between capability between MLP and RBF. 

 
Load Forecasting using RBF 
Neural Networks (NNs) have been tested on various power 

system problems such as planning, control, analysis, protection, 
design, load forecasting, and fault diagnosis. The last three ones 
are the most popular [16].   

The RBF neural network is a forward network pattern with 
appropriate performance, global approximation, and also is free 
from trapping in the local minima. It is a multi-input, single-
output system consisting of an input layer, a hidden layer, and an 
output layer. In data processing, the hidden layer performs 
nonlinear transforms for the feature extraction and the output 
layer gives a linear combination of output weights.  

The input is n-dimensions, learning samples are (X,Y) where 
X=(X1, X2, …, XN) is input variable, Xi= (xi1, xi2, …, xin)T(1≤i≤N), 
and the expected output is Yi= (yi1, yi2, …, yiN), N is the training 
number. If the input is Xi , the output of the ith node in the hidden 
layer can be expressed as, 

 
( ) ( )22exp,, σσ jijji CXCXG −=               (1) 

 
where, Cj=(cj1, cj2,…,cjn)T and σj are the center and width of 

the Gaussian function of the jth node in the hidden layer. 
For an input Xi the expected output of network is 
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which ωj is the weight between the jth neuron of the hidden 

layer and output neuron. M stands for neuron number in the 
hidden layer, and yi and ei are the expected output of Xi and the 
error of fitting, respectively. ei can be obtained by transposition 
of Eq. (2), that is 
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As for the selection of the center parameter of the Gaussian 

function, this paper uses the orthogonal least square algorithm. 
The least square algorithm is also applied to train the output 
weight in order to minimize total error, that is 
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Eq. (2) can be written in a matrix form as follows: 
 

EPWY +=                                                                  (5) 
 
where, Yi= [yi1, yi2, …, yiN]T, Yi= [P1, P2, …, PN]is output 

matrix of the hidden layer, and Yi= [pi1, pi2, …, piN] (1≤i≤N). W 
and E are output weights and error vectors. 

Carry orthogonal decomposition on P, 
 

HAP =                                                                             (6) 
 
where, A is upper triangular matrix with diagonal value 1, 

and matrix H contains the orthogonal vectors Hi. Eq. (7) can be 
changed into 

 

( )( ) EAWPAY += −1                                                  (7)  
 
suppose 

AWS =                                                                           (8) 
 
Then, Y is transformed as 
 

( ) EHSESPAY +=+= −1                                      (9) 
 
Therefore, using the least square algorithm S is obtained 

from Eq. (9) as 

( ) YHHHS TT 1−
=                                                     (10) 
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Since the number of hidden layers, M, that satisfies the 

training accuracy and generalization ability are far less than 
training number, N, the accumulating variance can be used for 
sample assessment and center selection. When ρi meets 

ρρρ >=∑ i

i

j
ji e ,                                                (12) 

 
The ith sample with maximal ρi is chosen as network center. 

0<  ρ <1 is preset tolerant variance limit. Weight can be 
determined by [17], 

 

SAW 1ˆ −=                                                                      (13) 
 
Load Forecasting Using MLP 
In this paper, the error back propagation algorithm is used to 

train the MLP network. Presenting an input pattern to the 
network produces an output vector. According to the difference 
between the produced and target outputs, the network's weights 
(Wij ) are adjusted to reduce the output error. The error at the 
output layer propagates backward to the hidden layer, until it 
reaches the input layer.  



 
 

                     M. Karimi et al / IJNES, 7 (1): 01-05, 2013                           3 
 

 

The output of neuron i, Oi, is connected to the input of 
neuron j through the interconnection weight Wij. Unless neuron k 
is one of the input neurons, the state of neuron k is given as 

 

( )∑= iikk QWfO                                                        (14) 

where,  f(x)=1/(1+e-x), and the sum is over all neurons in the 
adjacent layer. Let the target state of the output neuron be t. 
Thus, the error at the output neuron can be defined as 

( )2
2
1

kk OtE −=                                                          (15) 

where, neuron k is the output neuron. The gradient descent 
algorithm adapts the weights according to the gradient error,  
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Specifically, we define the error signal as 

j
j O

E
∂
∂

−=δ                                                                    (17) 

With some manipulation, we can get the following GDR 
as, 

ijij OW εδ=∆                                                                (18) 

 
where, ε is an adaptation gain. δj is computed based on 

whether or not neuron j is in the output layer. If neuron j is one 
of the output neurons, then 

 

( ) ( )jjjj OOOt −−= 1δ                                            (19) 

 
If neuron j is not in the output layer, then 
 

( )∑−=
k jkkjjj WOO δδ 1                                        (20) 

 
In order to improve the convergence characteristics, we can 

introduce a momentum term with momentum gain to Eq. (20), 
thus 

( ) ( )nWOnW ijjjij ∆+=+∆ αεδ1             (21) 

 
where, n represents the iteration index. 
 

Once the neural network is trained, it produces a very fast 
output for given input data. It only requires a few multiplications, 
additions, and calculations of sigmoid function [18]. 

 
SIMULATION RESULTS 
  

 In this section, two networks data has been employed to 
train MLP and RBF for STLF and MTLF.  For each, four 
statistical indices are used to analyze obtained results. These 
indices are Mean Absolute Error (MAE), Mean Absolute 
Percentage Error (MAPE), Symmetric Mean Absolute 
Percentage Error (SMAPE) and Relative Error Percentage 
(REP).  
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where, Ai and Fi are the actual and the forecasted values, 

respectively, N is the testing dataset size, and i denotes the test 
instance index.  

Data of Taghi-dizaj substation in Ardabil in North West of 
Iran and temperature in 1st June 2011 has been used for training 
of MLP and RBF in STLF. MLP has been designed in five 3, 5, 
7, 9 and 11 layers. Figure 1 shows real and forecasted value in 
1st June. 
By considering values of Figure 1, between 1-9 hours demand of 
network is less than 30 kW while after hour 9 this demand 
increases significantly. Maximum demand occurs between 21-23 
hours. Data of a part of Tabriz city electric network in 12 months 
of 2011 has been used to train MLP and RBF. The real and 
forecasted values have been illustrated in Figure2. 

In all cases, RBF results are the worst solution and are very 
far from the real value. The values of statistical indices for STLF 
and MTLF have been listed in Table 1. 
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 Figure 1. Short load forecasting by MLP and RBF in 1st   June 2011 
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Figure 2. Mid load forecasting by MLP and RBF at 2011 
 
 

Table 1. values of statistical indices for STLF and MTLF 
 

 

Load Forecating Index MLP  3 MLP  5 MLP  7 MLP  9 MLP  11 RBF 

Short Term 

MAE 0.89833 0.99583 0.637917 0.71125 0.64583 1.05752 
MAPE 1.91163 2.23606 1.298228 1.47331 1.31478 2.26702 
SMAPE 0.9663 1.1325 0.6564 0.7436 0.6636 1.1446 
REP 9.613 10.656 6.826 7.611 6.911 8.891 

Mid Term 

MAE 0.01428 0.00514 0.00749 0.00643 0.00235 3.79773 
MAPE 0.026825 0.009592 0.01406 0.01211 0.00442 7.2047 
SMAPE 0.013415 0.00479 0.00703 0.00605 0.00221 3.77250 
REP 0.02374 0.02773 0.018545 0.01652 0.00153 24.931 

 
 

 
 

In STLF case, by attention to results of Table 1, MLP7 and 
RBF present the best and worst MAE, respectively. MAE of 
MLP7 is 0.2604, 0.3579, 0.0733, 0.0079 and 0.4196 less than 
related parameter of MLP3, MLP5, MLP9, MLP11 and RBF, 
respectively. Maximum and minimum MAPE is similar to MAE. 
MLP7 has the lowest MAPE respect to other approaches. After 
MLP7, MLP9 and MLP11 present lower MAPE. MAPE of MLP7 
is 0.6134, 0.9378, 0.1751, 0.0166 and 0.9688 less than MLP3, 
MLP5, MLP9, MLP11 and RBF, respectively. Maximum SMAPE 
is devoted to RBF and is 0.1783, 0.0121, 0.4882, 0.401 and 
0.481more than corresponding parameter of MLP3, MLP5, MLP7 
and MLP11, respectively. In this case, MLP7, MLP9, MLP11, 
MLP3 and MLP5 techniques are better solution, respectively. 
Finally, REP of MLP7 and MLP5 are minimum and maximum 
among six techniques, respectively. REP of MLP7 is 2.787, 3.83, 
0.785, 0.085 and 2.065 less than related parameter of MLP3, 
MLP5, MLP9, MLP11 and RBF, respectively.  

In MTLF, MLP11 is best option among MLPs. In MAE, 
MLP3 presents the worst values which its results is 0.00914, 
0.00679, 0.00785 and 0.01193 more than related parameter of 
MLP5, MLP7, MLP9 and MLP11, respectively. Diagram of 
MAPE show MLP3 and MLP11 has maximum and minimum 
values, respectively. MLP5 and MLP9 as well as MLP7 are 
between MLP3 and MLP11, respectively. MAPE value of MLP3 
is 0.0172, 0.0128, 0.0147 and 0.0224 more than MLP5, MLP7, 
MLP9 and MLP11, respectively. This increment in SMAPE is 
0.0086, 0.0064, 0.0074 and 0.0112, respectively. REP value of 
MLP5 is the worst case among MLPs and its value is 0.004, 
0.0092, 0.0112 and 0.0262, respectively.  
 
 
 
 

DISCUSSION AND CONCLUSION 
 
This context suggests the use of two branches of NNs for 

short and mid terms load forecasting. Then, concept of forecasting 
and adjustments of MLP and RBF for them have been formulated. 
Simulations have been done in two practical cases. From 
simulation results the followings are highlighted; 
Remark i) In general, MLP presents better solution respect to 
RBF in solvin load forecasting problem in short and mid term 
cases. This fact in MTLF is more clear. 

Remark ii) Forecasting in mid term is more accurate than 
short term. 

Remark iii) Among MLPs, from the viewpoint of better 
solution for STLF these five kinds of MLP can be classified as 
follows: MLP7, MLP11, MLP9, MLP3 and MLP5. 

Remark ii) Among MLPs, from the viewpoint of better 
solution for MTLF these five kinds of MLP can be classified as 
follows: MLP11, MLP5, MLP7, MLP9 and MLP3. 
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