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Abstract

In this paper we consider the operator L generated in L’y (a,b] by the boundary problem

-2 @O +lg@)+24p@) - 21y@) =0, t(a,b),
wa)- P (@=0, yb)+H" ®)=0

where p(t) is continuous, g(t) is partial continuous, g(t) > 0, & > 0, H > 0 . We have obtained cigenvalues and eigenfunctions of

Schrodinger Operator with a general boundary condition on finite time scale and the formula of convergent expansions in terms of the eigenfunctions

in L*v (a,b] space.
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INTRODUCTION

The first articles on eigenvalues problems for linear
A-differential equations on time scales have been
investigated in [2] and [7].

Guseinov [8] investigated eigenfunction expansions for
the simple Sturm-Liouville eigenvalue problem

— V(@O =M(t) te(ab)

)

y(@)=y(b)=0 )

where a and b are some fixed points in a time scale T
with a < b and such that the time scale interval (a,b) is
not empty.

In that paper [8], existence of the eigenvalues and
eigenfunctions for problem (1), (2) is proved and mean
square convergent and uniformly convergent expansions
in eigenfunctions are established.

Huseynov and Bairamov in [ 1] have extended the results
of [8] to more general following eigenvalue problem

“pwr2 0] +a@yy =@y 1e(an],

Wa)-hy*@ =0, MB+Hy*(b)=0

Let us consider the operator L generated in
2 )
L3 (a,b]:=1y:(a,b] > R|[y*(©)Vi <0
a

by the eigenvalue problem

- [yA (t)]V + [q(t) +2Ap(t) = A* ly(t) =0, te(ab] (3
and the boundary condition

@)~y @) =0, WB)+Hy*(B)=0 @)

We will assume that the following two conditions are
satisfied.

(C)) p(t) is continuous on [a,b] and continuously V
-differentiable on (a,b], q(t) is piecewise continuous on

[a,b], hand H are real numbers.

(C,) p(t)>0,¢(t)>0for t €[a,b] and h >0, H>0.

In this paper, the Hilbert-Schmidt theorem on self-
adjoint completely continuous operators is applied to
show that the eigenvalue problem (3),(4) has a system
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of eigenfunctions that forms an orthonormal basis for
an appropriate Hilbert space. Moreover uniformly
convergent expansions in eigenfunctions are obtained
when the expanded functions satisfy some smoothness
conditions.

Let T be a time scale and a,b € T be fixed points with
a < b such that the time scale interval

(a,b)={teT:a<t<b}

is not empty. For standard notions and notations connected
to time scales calculus we refer to [5,6].

L?- Convergent Expansion

Denote by ‘H the Hilbert space of all real V
-measurable functions y: (a, b]— R such that y(b) =0
in the case b is left-scattered and H = 0, and that

b 2
[y“()Vt <o ,

a

with the inner product
b
(r.2)= [ ¥(O)z(t)V1

and the norm

1
, 1
=) = {J yz(t)w}z.

Next denote by D the set of all functions )’ € 'H satisfying
the following three conditions

(i) y is continuous on [a, G(b) ], where G denotes the
forward jump operator.

i) 2 (¢) is defined for 7 € [a,b] and

W@ -y@) =0, B+ Hy*(5)=0

Gi) y*(f) is V -differentiable on (a,b] and
[yA(t)]V €EH.

Obviously D is a linear subset dense in ‘H. Now we define
the operator

L :DC ‘"H — H as follows. The domain of definition
of L is D and we put

(ZyXo) = —[yA (r)]v +[g@)+ 22p@)y (@, te(abd] ’
for y €D.

Definition 1. A €C is called an eigenvalue of
problem(3)-(4) if there exists a nonidentically zero

function ¥ € D such that
- [yA(t)]v + [q(t) +22p(1) - ;Lzlv(t) —0, re(ab]

The function ) is called an eigenfunction of problem
(3)-(4), corresponding to the eigenvalue A. We see that the
eigenvalue problem (3)-(4) is equivalent to the equation

Ly-Ay= -[yA ([)r +[g@) + 2/p(t)-Aly. y € p, y#0
(5)

Theorem 1. Under the condition (C,) we have, for all
V,Z €D,

) (1.2} ={y.12} (©)
(i)

{Ly,y)= h[yA(a)]l +H[yA (b)]2 +f[y3(z)]3x+?[q(r)+ 20y 1)Vt
a a (7)
Proof. We have forall y,z €D

(0]

b ‘
{Ly.z)= J’{— ol o+ 22p(t)]3«'(t)}z(r)vt

b b
==y Oz ) +[y* Oz (OAL + [[q(0) + 22p(0) ()2(1) V't
= O 0O~y O v+ g+ 2400020V

b
= Jy(t){— [zA (t)]V +[q(t)+ Mp(t)]z(z)}w
={y.Lz)

where we have used the boundary conditions (4) for
functions y,z €D.

Simultaneously we have also got
(i)

b 2 b
(Ly.2)= 2O+ O de+ (g0 + 2p@]y> OVt

i@l o] + 1 oF ac+ oo + 220012 0w
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(6) shows that the operator L is symmetric(self-adjoint)
and (7) shows that under the additional condition (C,),
it is positive

{Ly.y}>0 forall yeD, y #0.

Therefore all eigenvalues of the operator L are real and
positive and any two eigenfunctions corresponding to the
distinct eigenvalues are orthogonal.

Now we would like to show that the existence of
eigenvalues for problem (3)-(4).

Theorem 2. kerL ={y €D: Ly = 0}= {0} .

Proof. If ¥ €D and Ly = 0, then from (7) we have
by the condition (C,) that y*(s)=0 for ¢ € (a,b] and
hence )(¢)=constant on [a,b] . Then using boundary
conditions (4) we get that y(¢) = 0.

It follows that the inverse operator L™ exists.

Theorem 3. The Green function G(t,s) of (3)-(4) is
defined as

ImA<0
ImA=20

Gl (t: ‘s):

S {Gz )

®)

Furthermore the Green function is symetric that is G(z,s)
= G(s,t) for t,s. Where G| (t,5) on the plane ImA <0 is
defined as

Gy (t,s) = —i
w1

{ul (tvi(s), t<s

uy(s)v @), t=s
and G, (t,5) on the plane Im A > 0 is defined as

G,(t,5) = L

wy (Us(S)va(8), t=s

{uz (t)vy(s), t<s

Inhere, U (t ) and V; (l ) are the solution of (3) satisfying
boundary conditions

u(@)=h, ul@)=1; wb)=H, v{}({b)=-1

and
uy(a)=h, ui(a)=1; v()=H, vy(d)=-1

respectively, and Wy and Wy are Wronskian of the

solutions # and V which are defined as

wy =W, (v )=y (O () =i (e ()

and

wy =W, (ug,vy) = us (62 (6) =u (1) (¢)
Note that w; # 0 and wy # 0.

Then

(7 10)= 1G5 s, e

forany f €H [3,4].

©)

The equations (8) and (9) imply that L' is completely
continuos (or compact) self-adjoint linear operator in the
Hilbert space H.

The eigenvalue problem (5) is equivalent (note that A
= 0 is not an eigenvalue of L) to the eigenvalue problem

Bg=pg. geH, g#0

where
B =L"and lu:i.
A

In other words, if A is an eigenvalue and Y €D
is a corresponding eigenfunction for L, then u = A
is an eigenvalue for B with the same corresponding
eigenfunction y conversely, if ¢ # 0 is an eigenvalue

and @ €'H is a corresponding eigenfunction for B, then

g €D and A = u’ is an eigenvalue for L with the same
eigenfunction g.
Next we use the following well-known Hilbert-

Schmidt theorem [1]. For every completely continuos
self-adjoint linear operator B in a Hilbert space ‘H there

exists an orthonormal system {(Dk} of eigenvectors
corresponding to eigenvalues {,u k }(,u K * 0) such that

element f €'H can be written uniquely in the form
S =2Ze+y,

k
where 7 e ker B, thatis, By =0 . Moreover,
Bf = = M P

and if the system {(pk } is infinite, then
limg, =0 (k— o)
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As a corollary of the Hilbert-Schmidt theorem we
have; If B is a completely continuous self-adjoint linear

operator in a Hilbert space ‘H and if ker B = {0} , then
the eigenvectors of B form an orthogonal basis of H.
Applying the corollary of the Hilbert-Schmidt theorem
to the operator B = L' and using the above described
connection between the eigenvalues and eigenfunctions

of L and the eigenvalues and eigenfunctions of B we use
the following result in [1].

Theorem 4. Under the conditions (C;) and (C; ), for the
eigenvalue problem (3)-(4) there exists an orthonormal

system {(pk}of eigenfunctions corresponding to
eigenvalues {ﬁk}. Each eigenvalue /1k is positive

and simple. The system {(Dk} forms an orthonormal
basis for the Hilbert space ‘H. Therefore the number of

the eigenvalues is equal to N = dim ‘H. Any function

f €'H can be expanded in eigenfunctions @y, in the
form

=3

> (t)
k=1

(10)

where €}, are the Fourier coefficients of f defined by

¢ =1 £ (O

(11)

In the case /N = 00 the sum in (10) becomes an infinite

series and it converges to the function f  in metric of the
space ‘H, that is, in mean square metric

b n 2
lim I[f(t)— zCkr/)k(r)} Vi=0
n—=%g k=1 (12)
Note that since
b 1 ? ) L)
J[f(t)—kgckcok (f)} Vi=[f Vi Ze

we get from (12) the Parseval equality

b
Pf2(Ve= Sk,
a k=1

(13)

Uniformly Convergent Expansion
In this section, if the conditions (CI) and (Cz) are
satisfied, we prove the following result.

Theorem 5. Let f :[a,b]— R be a function such

. . . A
that it has a A -derivative J (f ) everywhere on
[a,b_, except at a finite number of points ty5t5 5enest

R
belonging to (a,b), the A -derivative being
continuous everywhere except at these points, at which

f A has finite limits from the left and right. Besides

assume that [ satisfies the boundary conditions

fla)-nf*(a)=0, f(b)+Hf*{®)=0

Then the series
e 0]
>y (1)
k=1 (14)

where

b
cr =[O )V, (15)

converges uniformly on [a,b] to the function f .

Proof. Let the A -differentiable

fis

everywhere on [a,b] and that f A is continuous on [a,b]_

function

Consider the functional

D=l @f el 0 ]ZAH; lg(0)+ 202 (O

so that we have J(y)=0
J(v)

. Substituting in the functional

y=f(t)- élckcok (z)

2

where Cj. are defined by (15), we obtain

3 3
<

)~icg¢§(a)} -H{f‘(b)icwﬂb)}l
kel kel

.‘

‘.f ZC\ \ .' [ 7/‘Dif ZC\QD\ Vi

kel a \ kel

3\
chca{‘

fel
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=i @) + 8l e)
~2X el i @)+ 1 @)l o)

+ 3,0 o2 (a2 (a)+ Hop () @) *At
b b
+ [ r2at+ [(g+24p)
n 5, Z
— 2}, ck[J'f“‘go,?At +[(g+ Zﬂ«p)fcokaJ
k=1 a a
n b B
+ D e (I¢;\¢>f\At + I(q +22p ), @, V1) (16)

k=1

where O k1 is the Kronecker symbol and where we have
used the boundary conditions (4),

oc(@—hop(a)=0, @ (b)+Hpp (b)=0, (17)

and the equation

N2 @ + @+ 220)00 ©) = 2o O

Therefore we have from (16)

n b n
1= S|l al bl 0T a2y

Since the left-hand side is nonnegative we get the
inequality

élﬂkclg < h[fA(a)]2 JrH[fA(b)]2 +lj7[fA2 +(q+2ip)f2]m
(18)

analogous to Bessel’s inequality, and the convergence of
the series on the left follows. All the terms of this series

are nonnegative, since Ax>0 .

Note that the proof of (18) is entirely unchanged if we
assume that the function f satisfies only the conditions
stated in the theorem. Indeed, when integrating by parts,
itis sufficient to integrate over the intervals on which f* is
continuous and then add all these integrals (the integrated

terms vanish by (4), (17), and the fact that f,( ‘ and (0/?

are continuous on [a,b]).

We now show that the series

n
> |eron (¢)
k=1 (19)

is uniformly convergent on the interval [a ,b] Obviously
from this the uniformly convergence of series (14) will
follow.

Using the integral equation

AGE ﬂk?G(’aS)(Dk(S)VS

which follows from @) = /IkL_lgok by (9), we can
rewrite (19) as

él Ailergi (), e

where

¢ ()= 1G9y (5)7s

can be regarded as the Fourier coefficient of G(t ,S )as
a function of § . By using inequality (18), we can write

é]ikgl% (t)S h[GAs (t,a)]z +H[GAS (t,b)]z +?[GAsz(l,S)+(q(s)+Mp(s))Gz(t,s)}gx

2

where GAS (l‘ ,8 ) is the delta derivative of G(l‘ R S)with
respect to §. The function appearing under the integral
sign is bounded (see (8)) and it follows from (21) that

gikg/%(f)SM»
1

where M is a constant. Now replacing Zk by V A N Ais
we apply the Cauchy-Schwarz inequality to the segment
of series (20),

m+p m+p m+p m+p
z ﬂkckgk(fxﬁ\/ z ﬂ«kc;?\/ z /1kg13(f)$VM\/ Y Aei
k=m k=m k=m k=m

and this inequality, together with the convergence of the

series with terms ﬂkclz (see(18)), at once implies that
series (20), and hence series (19) is uniformly convergent

on the interval [a,b]. Denote the sum of series (14) by

Al

file)= kack% (r) (22)
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Since the series in (22) is convergent uniformly on

[a,b]. we can multiply both sides of (22) by @ (¢)and
then V integrate it term-by-term to get

b
IhOe Ve =cp.

Therefore the Fourier coefficients of f, and f are the
same. Then the Fourier coefficients of the difference
f, — [ are zero and applying the Parseval equality (13)
to the function f, — f we get that f, — f = 0, so that the
sum of series (14) is equal to f ().
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