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Abstract

On Expansion in Eigenfunctions for Schrödinger Equation with a General Boundary 
Condition on Finite Time Scale
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In this paper we consider the operator L generated in ],(2 baL ∇  by the boundary problem 

where  p(t) is continuous,  q(t) is partial continuous, q(t) ≥ 0, h ≥ 0, H ≥ 0 . We have obtained eigenvalues and eigenfunctions of 
Schrödinger Operator with a general boundary condition on finite time scale and the formula of convergent expansions in terms of the eigenfunctions 
in ],(2 baL ∇  space.  
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INTRODUCTION

    The first articles on eigenvalues problems for linear 
Δ-differential equations on time scales have been 
investigated in [2] and [7].
    Guseinov [8] investigated eigenfunction expansions for 
the simple Sturm-Liouville eigenvalue problem
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where a and b are some fixed points in a time scale T 
with  a < b and such that the time scale interval (a,b)  is 
not empty.

    In that paper [8], existence of the eigenvalues and 
eigenfunctions for problem (1), (2) is proved and mean 
square convergent and uniformly convergent expansions 
in eigenfunctions are established.
    Huseynov and Bairamov in [1] have extended the results 
of [8] to more general following eigenvalue problem
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Let us consider the operator L generated in
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by the eigenvalue problem   
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and the boundary condition

                    (4)                                                                            

We will assume that the following two conditions are 
satisfied.

(C1) p(t) is continuous on [a,b]  and continuously ∇
-differentiable on (a,b], q(t) is piecewise continuous on 

[a,b], h and H are real numbers.

(C2) p(t) > 0, q(t) ≥ 0 for [ ]bat ,∈  and h ≥ 0, H ≥ 0 .
    

In this paper, the Hilbert-Schmidt theorem on self-
adjoint completely continuous operators is applied to 
show that the eigenvalue problem (3),(4) has a system 
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of eigenfunctions that forms an orthonormal basis  for 
an appropriate Hilbert space. Moreover uniformly 
convergent expansions in eigenfunctions are obtained 
when the expanded functions satisfy some smoothness 
conditions.

    Let T be a time scale and ∈ba, T be fixed points with  
a < b such that the time scale interval

( ) { }btatba <<∈= :T,
                                            
is not empty. For standard notions and notations connected 
to time scales calculus we refer to [5,6].

L2 – Convergent Expansion
Denote by Ἡ the Hilbert space of all real ∇

-measurable functions y: (a, b]→ R such that  y(b) = 0 
in the case b is left-scattered and H = 0, and that
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with the inner product  
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Next denote by Ɗ the set of all functions ∈y Ἡ satisfying 
the following three conditions

(i) y is continuous on [a, σ(b) ], where σ denotes the 
forward jump operator.

(ii) )(ty∆  is defined for [ ]bat ,∈  and
                                

(iii) )(ty∆  is ∇ -differentiable on ( ]ba,  and 

[ ] ∈
∇∆ )(ty Ἡ .

Obviously Ɗ is a linear subset dense in Ἡ. Now we define 
the operator

:L Ɗ⊂  Ἡ →  Ἡ as follows. The domain of definition 
of L is Ɗ and we put 

,
for ∈y Ɗ.

Definition 1. ∈λ ₵ is called an eigenvalue of 
problem(3)-(4) if there exists a nonidentically zero 
function ∈y Ɗ such that

[ ] [ ] ( ]battytptqty ,,0)()(2)()( 2 ∈=−++−
∇∆ λλ

.

The function y  is called an eigenfunction of problem 
(3)-(4), corresponding to the eigenvalue λ. We see that the 
eigenvalue problem (3)-(4) is equivalent to the equation

Ɗ, y≠ 0                                          
      (5)

Theorem 1. Under the condition (C1) we have, for all 
∈zy, Ɗ,

(i) ,                             (6)                                                                          

(ii)   
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Proof. We have for all ∈zy, Ɗ
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where we have used the boundary conditions (4) for 
functions ∈zy, Ɗ.
     
Simultaneously we have also got
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(6) shows that the operator L is symmetric(self-adjoint) 
and (7) shows that under the additional condition (C2), 
it is positive

 for all ∈y Ɗ, 0≠y .

Therefore all eigenvalues of the operator L are real and 
positive and any two eigenfunctions corresponding to the 
distinct eigenvalues are orthogonal.
    Now we would like to show that the existence of 
eigenvalues for problem (3)-(4). 

Theorem 2.  kerL = { ∈y Ɗ: Ly = 0}= { }0 .

Proof. If ∈y Ɗ and Ly = 0, then from (7) we have 

by the condition (C2) that 0)( =∆ ty  for ( ]bat ,∈  and  

hence )(ty =constant on[ ]ba, . Then using boundary 
conditions (4) we get that .0)( ≡ty

It follows that the inverse operator L-1 exists.                                                                                

Theorem 3. The Green function G(t,s) of (3)-(4) is 
defined as
                                                                                                   

                   
Furthermore the Green function is symetric that is G(t,s) 
= G(s,t) for t,s. Where G1 (t,s) on the plane Im λ ≤ 0  is 
defined as
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and G2 (t,s) on the plane Im λ ≥ 0 is defined as
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In here, ( )tu1  and ( )tv1  are the solution of (3) satisfying 
boundary conditions
 

( ) ( ) 1,)(;1)(, 1111 −==== ∆∆ bvHbvauhau
and
 

( ) ( ) 1)(,)(;1, 2222 −==== ∆∆ bvHbvauhau

respectively, and 1w  and 2w  are Wronskian of the 

(8)

solutions u  and v  which are defined as
           

( ) ( ) ( ) ( ) ( )tvtutvtuvuWw t 1111111 , ∆∆ −==

and    
    

( ) ( ) ( ) ( ) ( )tvtutvtuvuWw t 2222222 , ∆∆ −==

Note that 01 ≠w  and 02 ≠w .
    
Then

( ) ( ) ( ) ∈∀∇= ∫
− fstfstGtfL

b

a
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for any ∈f Ἡ  [ ]4,3 .

    The equations (8) and (9) imply that L-1 is completely 
continuos (or compact) self-adjoint linear operator in the 
Hilbert space Ἡ.

The eigenvalue problem (5) is equivalent (note  that λ 
= 0 is not an eigenvalue of L) to the eigenvalue problem

                                                                                                    

 Ἡ,  0≠g   

where

B = L-1 and 
λ

µ 1
= .

In other words, if  λ  is an eigenvalue and ∈y Ɗ 
is a corresponding eigenfunction for L, then μ = λ-1 
is an eigenvalue for B with the same corresponding 
eigenfunction y conversely, if μ ≠ 0 is an eigenvalue 
and ∈g Ἡ is a corresponding eigenfunction for B, then 
∈g Ɗ and λ = μ-1 is an eigenvalue for L with the same 

eigenfunction g.
    Next we use the following well-known Hilbert-
Schmidt theorem [ ]1 . For every completely continuos 
self-adjoint linear operator B in a Hilbert space  Ἡ there 

exists an orthonormal system { }kϕ  of eigenvectors 

corresponding to eigenvalues { }( )0≠kk µµ  such that 

element ∈f Ἡ can be written uniquely in the form

∑ +=
k

kkcf ,ψϕ
 

where Bker∈ψ , that is, 0=ψB . Moreover,

 

and if the system { }kϕ  is infinite, then 

( )∞→= kk 0limµ .

,
,

,
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    As a corollary of the Hilbert-Schmidt theorem we 
have; If B is a completely continuous self-adjoint linear 

operator in a Hilbert space Ἡ and if { }0ker =B , then 
the eigenvectors of B form an orthogonal basis of Ἡ.
    Applying the corollary of the Hilbert-Schmidt theorem 
to the operator B = L-1 and using the above described 
connection between the eigenvalues and eigenfunctions  
of L and the eigenvalues and eigenfunctions of B we use 
the following result in [ ]1 .

Theorem 4. Under the conditions ( )1C  and ( )2C , for the 
eigenvalue problem (3)-(4) there exists an orthonormal 

system { }kϕ of eigenfunctions corresponding to 

eigenvalues { }kλ . Each eigenvalue kλ  is positive 

and simple. The system { }kϕ  forms an orthonormal 
basis for the Hilbert space Ἡ. Therefore the number of 

the eigenvalues is equal to dim=N Ἡ. Any function 

∈f Ἡ can be expanded in eigenfunctions kϕ  in the 
form

( ) ( )∑
=

=
N

k
kk tctf

1
ϕ

                                                                                                                      

where kc  are the Fourier coefficients of f defined  by
                                                                                                         

( ) ( )∫ ∇=
b

a
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In the case ∞=N  the sum in (10) becomes an infinite 

series and it converges to the function f  in metric of the 
space Ἡ, that is, in mean square metric
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Note that since          
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we get from (12) the Parseval equality

( ) .
1

22
∫ ∑

=
=∇

b

a

N

k
kcttf

 (13)
                                                                                                  

Uniformly Convergent Expansion
In this section, if the conditions ( )1C and ( )2C  are 
satisfied, we prove the following result.

Theorem 5. Let [ ] Rbaf →,: be a function such 

that it has a ∆ -derivative ( )tf ∆  everywhere on 
[ ]ba, , except at a finite number of points mttt ,...,, 21  
belonging to ( )ba, , the ∆ -derivative being 
continuous everywhere except at these points, at which 

∆f  has finite limits from the left and right. Besides 

assume that f satisfies the boundary conditions 
.

Then the series

( )∑
∞

=1k
kk tc ϕ

   (14)
                                                                                                                     
where

( )∫ ∇=
b

a
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converges uniformly on [ ]ba,  to the function f .

Proof. Let the function f is ∆ -differentiable 

everywhere on[ ]ba,  and that ∆f  is continuous on[ ]ba, . 

Consider the functional
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so that we have ( ) 0≥yJ . Substituting in the functional 
( )yJ
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where kc  are defined by (15), we obtain
                          

                       

(10) (15)
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where lk ,δ is the Kronecker symbol and where we have 
used the boundary conditions (4),

( ) ( ) ( ) ,0,0)( =+=− ∆∆ bHbaha kkkk ϕϕϕϕ             (17)
                                                         
and the equation      
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Since the left-hand side is nonnegative we get the 
inequality

( )[ ] ( )[ ] ( )[ ] tfpqfbfHafhc
b
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(18)
analogous to Bessel’s inequality, and the convergence of 
the series on the left follows. All the terms of this series 

are nonnegative, since 0>kλ .
     Note that the proof of (18) is entirely unchanged if we 
assume that the function ƒ satisfies only the conditions 
stated in the theorem. Indeed, when integrating by parts, 
it is sufficient to integrate over the intervals on which ƒ∆ is 
continuous and then add all these integrals (the integrated 

terms vanish by (4), (17), and the fact that ƒ,φk and ∆
kϕ  

are continuous on [ ]ba, ).

We now show that the series

( )∑
=

n

k
kk tc

1
ϕ

                                                                                                                      (19)

is uniformly convergent on the interval [ ]ba, . Obviously 
from this the uniformly convergence of series (14) will 
follow.

Using the integral equation

( ) ( ) ( ) ssstGt
b

a
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which follows from kkk L ϕλϕ 1−=  by (9), we can 
rewrite (19) as
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where

( ) ( ) ( ) ssstGtg k
b

a
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can be regarded as the Fourier coefficient of ( )stG , as 
a function of s . By using inequality (18), we can write
    

( ) ( )[ ] ( )[ ] ( ) ( )( ) ( )[ ] sstGspsqstGbtGHatGhtg
b

a
sss

k
kk ∆++++≤ ∫∑ ∆∆∆∞

=
,2)(,,, 2222

1

2 λλ

(21)

where ( )stG s ,∆  is the delta derivative of ( )stG , with 
respect to s . The function appearing under the integral 
sign is bounded (see (8)) and it follows from (21) that
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where M is a constant. Now replacing kλ  by kλ kλ  
we apply the Cauchy-Schwarz inequality to the segment 
of series (20),
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and this inequality, together with the convergence of the 

series with terms 2
kk cλ (see(18)), at once implies that 

series (20), and hence series (19) is uniformly convergent 

on the interval [ ]ba, . Denote the sum of series (14) by 

( )tf1

( ) ( )∑
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Since the series in (22) is convergent uniformly on 

[ ]ba, , we can multiply both sides of (22) by ( )tlϕ and 
then ∇  integrate it term-by-term to get
                                          

( ) ( )∫ =∇
b

a
ll ctttf .1 ϕ

Therefore the Fourier coefficients of ƒ1 and ƒ are the  
same. Then the Fourier coefficients of the difference        
ƒ1  – ƒ are zero and applying the Parseval equality (13) 
to the function ƒ1  – ƒ  we get that ƒ1  – ƒ = 0, so that the 
sum of series (14) is equal to ƒ (t). 


