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ABSTRACT.  In this study, the Advection equation will be solved numerically using the cubic B-spline 

Galerkin finite-element method, based on second, fourth and sixth order single step methods for time 

integration. The test problem is studied, and accuracy of the numerical results are measured by the 

computing the maximum error norm for the proposed methods. The numerical results of this study 

demonstrate that the proposed three algorithms especially the sixth order single step method are a 

remarkably successful numerical technique for solving the Advection equation. 
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INTRODUCTION 

The Advection equation is the basis of many physical and chemical phenomena. 

Various numerical techniques have been developed and compared for solving the one 

dimensional Advection equation with constant coefficient so far [1,2,3]. This study 

presents high order time discretization numerical method for the Advection equation. The 

main idea of using this method is to obtain high-order approximate solution for Advection 

equation by using Taylor series expansion. The structure of the study is as follows. In the 

next section, after the time discretization of the Advection equation is performed by using 

higher accurate finite difference method, a finite element space discretization is used to 

obtain a system of algebraic equation. In the numerical experiment section, proposed 

methods are tested for the two test problems and finally, a summary of main findings of 

the work is presented in the last section.  

We consider the following one-dimensional Advection equation 

𝒖𝒕 + 𝜶𝒖𝒙 = 𝟎, 𝒂 ≤ 𝒙 ≤ 𝒃  (1) 

 

with the boundary conditions 

𝒖(𝒂, 𝒕) = 𝒖(𝒃, 𝒕) = 𝟎, 𝒕 ∈ [𝟎, 𝑻] (2) 

 

and initial condition 

𝒖(𝒙,𝟎) = 𝒇(𝒙), 𝒂 ≤ 𝒙 ≤ 𝒃  (3) 

in a restricted solution domain over the space/time interval  [𝒂, 𝒃] × [𝟎, 𝑻] . In the one-

dimensional linear Advection equation,  𝜶  is the steady uniform fluid velocity and  𝒖 =
𝒖(𝒙, 𝒕)  is a function of two independent variables  𝒕  and  𝒙 , which generally denote 

time and space, respectively. 
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APPLICATION OF THE METHOD 

For computational work, the space-time plane is discretized by grids with the time step  

𝒌  and space step  𝒉 . The exact solution of the unknown function at the grid points is 
denoted by  

𝒖(𝒙𝒎, 𝒕𝒏) = 𝒖𝒎
𝒏 ,𝒎 = 𝟎, 𝟏,… ,𝑵;     𝒏 = 𝟎, 𝟏, 𝟐, … 

 

where  𝒙𝒎 = 𝒂 +𝒎𝒉,   𝒕𝒏 = 𝒏𝒌  and the notation  𝑼𝒎
𝒏   is used to represent the numerical 

value of  𝒖𝒎
𝒏 .  

 

Time Discretization 

 

Using the Advection equation of the form  

𝒖𝒕 = −𝜶𝒖𝒙 (4) 

 

and the following one-step method 

𝒖𝒏+𝟏 = 𝒖𝒏 + 𝜽𝟏𝒖𝒕
𝒏+𝟏 + 𝜽𝟐𝒖𝒕

𝒏 + 𝜽𝟑𝒖𝒕𝒕
𝒏+𝟏 + 𝜽𝟒

𝒏𝒖𝒕𝒕
𝒏 + 𝜽𝟓𝒖𝒕𝒕𝒕

𝒏+𝟏 + 𝜽𝟔
𝒏𝒖𝒕𝒕𝒕

𝒏 , (5) 

 

we have the time discretization of the Eq. (1). Taking  

𝜽𝟏 = 𝜽𝟐 = 𝒌/𝟐, 𝜽𝟑 = 𝜽𝟒 = 𝜽𝟓 = 𝜽𝟔 = 𝟎     

in (5) ,  the proposed method is of order 2 (M1) known as Crank-Nicolson method (CN 

method) and then taking   

 𝜽𝟏 = 𝜽𝟐 = 𝒌/𝟐, 𝜽𝟑 = −𝒌
𝟐/𝟏𝟐, 𝜽𝟒 = 𝒌

𝟐/𝟏𝟐, 𝜽𝟓 = 𝜽𝟔 = 𝟎 
in (5), the method is of order 4 (M2). Finally taking 

 𝜽𝟏 = 𝜽𝟐 = 𝒌/𝟐, 𝜽𝟑 = −𝒌𝟐/𝟏𝟎,  𝜽𝟒 = 𝒌
𝟐/𝟏𝟎, 𝜽𝟓 = 𝒌𝟑/𝟏𝟐𝟎, 𝜽𝟔 = 𝒌

𝟑/𝟏𝟐𝟎 
in (5), the method is of order 6 (M3).  Using the Eq. (4) then we have the following 

relations: 

𝒖𝒕𝒕 = −𝜶(𝒖𝒕)𝒙 = −𝜶(−𝜶𝒖𝒙)𝒙 = 𝜶𝟐𝒖𝒙𝒙, 
𝒖𝒕𝒕𝒕 = 𝜶𝟐(𝒖𝒕)𝒙𝒙 = 𝜶

𝟐(−𝜶𝒖𝒙)𝒙𝒙 = −𝜶
𝟑𝒖𝒙𝒙𝒙. 

Using 𝒖𝒕, 𝒖𝒕𝒕, 𝒖𝒕𝒕𝒕 in the proposed time discretization method for the Advection 
equation, we have 

𝒖𝒏+𝟏 + 𝜶𝜽𝟏(𝒖𝒙)
𝒏+𝟏 − 𝜶𝟐𝜽𝟑(𝒖𝒙𝒙)

𝒏+𝟏 + 𝜶𝟑𝜽𝟓(𝒖𝒙𝒙𝒙)
𝒏+𝟏

= 𝒖𝒏 − 𝜶𝜽𝟐(𝒖𝒙)
𝒏 + 𝜶𝟐𝜽𝟒(𝒖𝒙𝒙)

𝒏 − 𝜶𝟑𝜽𝟔(𝒖𝒙𝒙𝒙)
𝒏. 

 

 

(6) 

The interval  [𝒂, 𝒃]  is divided into uniformly sized 𝑵 finite sub-elements of equal 

length  𝒉  at the knots  

𝒂 = 𝒙𝟎 < 𝒙𝟏 < ⋯ < 𝒙𝑵 = 𝒃. 

On this partition, the cubic B-splines  𝝋𝒎,   𝒎 = −𝟏,… ,𝑵 + 𝟏,  have the following 

form [4,5,6]: 

𝝋𝒎(𝒙)

=
𝟏

𝒉𝟑
 

{
 
 

 
 

(𝒛𝒎−𝟐)
𝟑 , 𝒙𝒎−𝟐 ≤ 𝒙 < 𝒙𝒎−𝟏

𝒉𝟑 + 𝟑𝒉𝟐𝒛𝒎−𝟏 + 𝟑𝒉(𝒛𝒎−𝟏)
𝟐 − 𝟑(𝒛𝒎−𝟏)

𝟑 , 𝒙𝒎−𝟏 ≤ 𝒙 < 𝒙𝒎
𝒉𝟑 − 𝟑𝒉𝟐𝒛𝒎+𝟏 + 𝟑𝒉(𝒛𝒎+𝟏)

𝟐 + 𝟑(𝒛𝒎+𝟏)
𝟑 , 𝒙𝒎 ≤ 𝒙 < 𝒙𝒎+𝟏

−(𝒛𝒎+𝟐)
𝟑 , 𝒙𝒎+𝟏 ≤ 𝒙 < 𝒙𝒎+𝟐

𝟎 , otherwise

 

 

 

(7) 
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where 𝒛𝒎 = (𝒙 − 𝒙𝒎). The set of cubic B-splines  𝝋𝒎(𝒙),   𝒎 = −𝟏,… ,𝑵 + 𝟏  forms a 

basis over the space interval  𝒂 ≤ 𝒙 ≤ 𝒃. Over the problem domain, the approximate 

solution  𝑼(𝒙, 𝒕)  to the exact solution  𝒖(𝒙, 𝒕)  can be written as a combination of the 
cubic B-splines  

𝑼(𝒙, 𝒕) = ∑ 𝜹𝒋𝝋𝒋

𝑵+𝟏

𝒋=−𝟏

 

 

 

(8) 

where  𝜹𝒋  are time dependent unknown parameters which will be determined from the 

Galerkin method and the boundary and initial conditions. Since the cubic B-spline 

functions (7) and its first second derivatives are continuous, trial solutions (8) have 

continuity up to second order. Using (7-8), the nodal values  𝑼  and its first and second 

space derivatives at the knots  𝒙𝒎  are obtained as 

𝑼𝒎 = 𝑼(𝒙𝒎) = 𝜹𝒎+𝟏 + 𝟒𝜹𝒎 + 𝜹𝒎−𝟏, 

𝑼𝒎
′ = 𝑼′(𝒙𝒎) = 𝟑

𝒉
(𝜹𝒎+𝟏 − 𝜹𝒎−𝟏), 

𝑼𝒎
′′ = 𝑼″(𝒙𝒎) = 𝟔

𝒉𝟐
(𝜹𝒎−𝟏 − 𝟔𝜹𝒎 + 𝜹𝒎+𝟏). 

 

 

 

(9) 

A typical finite interval  [𝒙𝒎, 𝒙𝒎+𝟏]  is mapped to the interval  [𝟎, 𝒉]  by a local 

coordinate transformation defined by  𝝃 = 𝒙 − 𝒙𝒎.  Therefore cubic B-spline shape 

functions in terms of  𝝃  over the element  [𝟎, 𝒉]  can be given as 

𝝋𝒎−𝟏(𝝃) = (𝟏 −
𝝃

𝒉
)
𝟑

, 

𝝋𝒎(𝝃) = 𝟒 − 𝟔
𝝃𝟐

𝒉𝟐
+ 𝟑

𝝃𝟑

𝒉𝟑
, 

𝝋𝒎+𝟏(𝝃) = 𝟏 + 𝟑
𝝃

𝒉
+ 𝟑

𝝃𝟐

𝒉𝟐
− 𝟑

𝝃𝟑

𝒉𝟑
, 

𝝋𝒎+𝟐(𝝃) =
𝝃𝟑

𝒉𝟑
. 

 

 

 

 

(10) 

Combination of the element shape functions  𝝋𝒊  together with element time parameters  

𝜹𝒊,   𝒊 = 𝒎− 𝟐,… ,𝒎 + 𝟑  gives an approximation for the typical element  [𝟎, 𝒉]  

𝑼𝒆 = 𝑼(𝝃, 𝒕) = ∑ 𝜹𝒋(𝒕)𝝋𝒋(𝝃)

𝒎+𝟐

𝒋=𝒎−𝟏

 

 

(11) 

Applying Galerkin method to Eq. (5) with weight function  𝑾(𝒙)  leads to the 
equation: 

∫𝑾(𝒙)(𝒖𝒏+𝟏 + 𝜶𝜽𝟏(𝒖𝒙)
𝒏+𝟏 − 𝜶𝟐𝜽𝟑(𝒖𝒙𝒙)

𝒏+𝟏 + 𝜶𝟑𝜽𝟓(𝒖𝒙𝒙𝒙)
𝒏+𝟏)𝒅𝒙

𝒃

𝒂

= ∫𝑾(𝒙)(𝒖𝒏 − 𝜶𝜽𝟐(𝒖𝒙)
𝒏 + 𝜶𝟐𝜽𝟒(𝒖𝒙𝒙)

𝒏 − 𝜶𝟑𝜽𝟔(𝒖𝒙𝒙𝒙)
𝒏)𝒅𝒙.

𝒃

𝒂

 

 

 

 

 

(12) 

 

In the above Galerkin method formulation, weight functions  𝑾(𝒙)  and exact solution 
are replaced with cubic B-splines shape functions (10) and approximation given by (11), 
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respectively. Integrating by parts and using the boundary conditions yields a fully discrete 

approximation obtained over the element  [𝟎, 𝒉]  as:  

∑ (∫𝝋𝒊(𝝋𝒋 + 𝜶𝜽𝟏𝝋𝒋
′ − 𝜶𝟐𝜽𝟑𝝋𝒋

′′)𝒅𝝃

𝒉

𝟎

− 𝜶𝟑𝜽𝟓∫𝝋𝒊
′𝝋𝒋

′′𝒅𝝃

𝒉

𝟎

)𝜹𝒋
𝒏+𝟏

𝒎+𝟐

𝒋=𝒎−𝟏

− ∑ (∫𝝋𝒊(𝝋𝒋 − 𝜶𝜽𝟐𝝋𝒋
′ + 𝜶𝟐𝜽𝟒𝝋𝒋

′′)𝒅𝝃

𝒉

𝟎

+ 𝜶𝟑𝜽𝟔∫𝝋𝒊
′𝝋𝒋

′′𝒅𝝃

𝒉

𝟎

)𝜹𝒋
𝒏

𝒎+𝟐

𝒋=𝒎−𝟏

 

 

 

 

 

(13) 

 

where  𝒊  and  𝒋  take only the values  𝒎− 𝟏,… ,𝒎 + 𝟐  and  𝒎 = 𝟎, 𝟏, … ,𝑵 − 𝟏  for the 

typical element  [𝟎, 𝒉] . (13) can be written in matrix form as  

[𝑨𝒆 + 𝜶𝜽𝟏𝑩
𝒆 − 𝜶𝟐𝜽𝟑𝑪

𝒆 − 𝜶𝟑𝜽𝟓𝑫
𝒆](𝜹𝒆)𝒏+𝟏

− [𝑨𝒆 − 𝜶𝜽𝟐𝑩
𝒆 + 𝜶𝟐𝜽𝟒𝑪

𝒆 + 𝜶𝟑𝜽𝟔𝑫
𝒆](𝜹𝒆)𝒏 

 

(14) 

 

where the dimension of the element matrices  𝑨𝒆,   𝑩𝒆,   𝑪𝒆 ,  𝑫𝒆 ,  𝑬𝒆  are  𝟒 × 𝟒 , and 
the element matrices and element parameters are 

𝑨𝒊,𝒋
𝒆 = ∫𝝋𝒊𝝋𝒋𝒅𝝃,

𝒉

𝟎

𝑩𝒊,𝒋
𝒆 = ∫𝝋𝒊𝝋𝒋

′𝒅𝝃

𝒉

𝟎

, 𝑪𝒊,𝒋
𝒆 = ∫𝝋𝒊𝝋𝒋

′′𝒅𝝃

𝒉

𝟎

, 𝑫𝒊,𝒋
𝒆 = ∫𝝋𝒊

′𝝋𝒋
′′𝒅𝝃

𝒉

𝟎

, 

 

Assembling contributions from all elements, (12) leads to the following linear system 

for the time evolution of  𝜹 : 

[𝑨 + 𝜶𝜽𝟏𝑩 − 𝜶
𝟐𝜽𝟑𝑪 − 𝜶

𝟑𝜽𝟓𝑫]𝜹
𝒏+𝟏 = [𝑨 − 𝜶𝜽𝟐𝑩+ 𝜶

𝟐𝜽𝟒𝑪 + 𝜶
𝟑𝜽𝟔𝑫]𝜹

𝒏. (15) 

The linear system (15) consists of  𝑵+ 𝟑  linear equations in  𝑵+ 𝟑  unknowns  

(𝜹−𝟏
𝒏+𝟏, … , 𝜹𝑵+𝟏

𝒏+𝟏).  After initial vector  𝜹𝟎 = (𝜹−𝟏
𝟎 , … , 𝜹𝑵+𝟏

𝟎 )  is found with the help of the 

boundary and initial conditions,  𝜹𝒏+𝟏, (𝒏 = 𝟎, 𝟏,… )  unknown vectors can be found 

repeatedly by solving the recurrence relation (14) using previous  𝜹𝒏  unknown vector. 

TEST PROBLEM 

For the test problem, accuracy of the proposed three algorithms is worked out by 

measuring error norm  𝑳∞   

𝑳∞ = 𝐦𝐚𝐱
𝒎
|𝒖𝒎 − 𝑼𝒎| (16) 

 

In this test problem, the Advection equation has the exact solution  

𝒖(𝒙, 𝒕) = 𝟏𝟎𝒆𝒙𝒑(−
(𝒙 − �̃�𝟎 − 𝜶𝒕)

𝟐

𝟐𝝆𝟐
). 

 

The numerical simulation is accomplished with flow velocity  𝜶   = 𝟎. 𝟓𝒎/𝒔 , initial 

peak location  �̃�𝟎 = 𝟐𝒌𝒎  and  𝝆 = 𝟐𝟔𝟒  by the terminating time  𝒕 = 𝟏𝟎𝟎𝟎𝟎𝒔 . 

Therefore the initial condition  𝒖(𝒙, 𝟎)  is propagated in a long channel without change 

in shape or size by the time  𝒕 = 𝟏𝟎𝟎𝟎𝟎𝒔  with flow velocity  𝜶   = 𝟎. 𝟓𝒎/𝒔.  So initial 

condition travels from the initial position to a distance of  𝟓𝒌𝒎  and the peak value of the 
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solution remain constant  𝟏𝟎  for all time. After the program run up to time  𝒕 = 𝟏𝟎𝟎𝟎𝟎𝒔 

, initial solutions and waves at various times are depicted in Fig. 1 for the M3 with  𝒉 =
𝜟𝒕 = 𝟏𝟎 . It can be seen from the figure that wave propagates without any change in its 
shape.  

 

 

Fig. 1.  Waves at t=0,2000,4000,6000,8000,10000. 

 

The error norms  𝐿∞  for the proposed three methods are listed in Table 1. According 
to the table, when time and space steps are reduced from 200 to 10, the error norms 

decrease for all algorithms. Among the suggested methods, the sixth order method gives 

the least error as expected. 

 

 

Table 1. The error norms for the proposed three methods 

h=k M1 M2 M3 

200 2.42 1.14× 10−1 8.32× 10−2 

100 7.62× 10−1 1.96× 10−3 1.82× 10−4 

50 1.98× 10−1 1.22× 10−4 5.50× 10−7 

20 3.13× 10−2 3.13× 10−6 5.02× 10−10 

10 7.82× 10−3 1.96× 10−7 5.40× 10−12 

 

CONCLUSION 

The high-order Galerkin finite-element method based on Taylor series expansion for 

the time discretization and cubic B-spline functions for the space discretization was 

proposed to solve numerically the Advection equation. The test problem was simulated 

well with the proposed three algorithms. As expected, it was seen from the test problem 

that the third algorithm with the highest accuracy gave better results. Consequently, the 

numerical result of this study demonstrates that the proposed algorithms especially the 
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sixth order method are a remarkably successful numerical technique for solving the 

Advection equation. It can also be efficiently applied to similar physically important 

equations. 
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